問題を入力...
微分積分 例
ステップ 1
を関数で書きます。
ステップ 2
ステップ 2.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.1.1
連鎖律を当てはめるために、をとします。
ステップ 2.1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.1.3
のすべての発生をで置き換えます。
ステップ 2.2
べき乗則を使って微分します。
ステップ 2.2.1
とをまとめます。
ステップ 2.2.2
をに書き換えます。
ステップ 2.2.3
のとき、はであるというべき乗則を使って微分します。
ステップ 2.2.4
分数をまとめます。
ステップ 2.2.4.1
とをまとめます。
ステップ 2.2.4.2
負の指数法則を利用してを分母に移動させます。
ステップ 2.3
指数を足してにを掛けます。
ステップ 2.3.1
にをかけます。
ステップ 2.3.1.1
を乗します。
ステップ 2.3.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 2.3.2
とをたし算します。
ステップ 3
ステップ 3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 3.2
指数の基本法則を当てはめます。
ステップ 3.2.1
をに書き換えます。
ステップ 3.2.2
の指数を掛けます。
ステップ 3.2.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.2.2.2
にをかけます。
ステップ 3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 3.4
にをかけます。
ステップ 3.5
簡約します。
ステップ 3.5.1
負の指数法則を利用して式を書き換えます。
ステップ 3.5.2
とをまとめます。
ステップ 4
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 5
一次導関数がに等しくなるの値がないので、極値はありません。
極値がありません
ステップ 6
極値がありません
ステップ 7