問題を入力...
微分積分 例
,
ステップ 1
ステップ 1.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 1.2
について解きます。
ステップ 1.2.1
方程式の両辺からを引きます。
ステップ 1.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 1.2.3
をに書き換えます。
ステップ 1.2.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 1.2.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 1.2.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 1.2.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 1.3
定義域はすべての実数です。
区間記号:
集合の内包的記法:
区間記号:
集合の内包的記法:
ステップ 2
はで連続します。
は連続します
ステップ 3
関数の区間の平均値はと定義されます。
ステップ 4
実際の値を関数の平均値の公式に代入します。
ステップ 5
はに対して定数なので、を積分の外に移動させます。
ステップ 6
ステップ 6.1
とします。を求めます。
ステップ 6.1.1
を微分します。
ステップ 6.1.2
総和則では、のに関する積分はです。
ステップ 6.1.3
のとき、はであるというべき乗則を使って微分します。
ステップ 6.1.4
はについて定数なので、についての微分係数はです。
ステップ 6.1.5
とをたし算します。
ステップ 6.2
のに下限値を代入します。
ステップ 6.3
簡約します。
ステップ 6.3.1
を乗します。
ステップ 6.3.2
とをたし算します。
ステップ 6.4
のに上限値を代入します。
ステップ 6.5
簡約します。
ステップ 6.5.1
を乗します。
ステップ 6.5.2
とをたし算します。
ステップ 6.6
とについて求めた値は定積分を求めるために利用します。
ステップ 6.7
、、および新たな積分の極限を利用して問題を書き換えます。
ステップ 7
ステップ 7.1
にをかけます。
ステップ 7.2
をの左に移動させます。
ステップ 8
はに対して定数なので、を積分の外に移動させます。
ステップ 9
とをまとめます。
ステップ 10
のに関する積分はです。
ステップ 11
ステップ 11.1
およびでの値を求めます。
ステップ 11.2
簡約します。
ステップ 11.2.1
からを引きます。
ステップ 11.2.2
にをかけます。
ステップ 12
とをたし算します。
ステップ 13
にをかけます。
ステップ 14