問題を入力...
垎åįŠå äž
ãšããã 1
ãšããã 1.1
垎åããžãã
ãšããã 1.1.1
įˇååã§ã¯ããŽãĢéĸããįŠåã¯ã§ãã
ãšããã 1.1.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 1.2
ãŽå¤ãæąããžãã
ãšããã 1.2.1
ã¯ãĢ寞ããĻåŽæ°ãĒãŽã§ããĢ寞ãããŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 1.2.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 1.2.3
ãĢããããžãã
ãšããã 2
ãšããã 2.1
įˇååã§ã¯ããŽãĢéĸããįŠåã¯ã§ãã
ãšããã 2.2
ãŽå¤ãæąããžãã
ãšããã 2.2.1
ã¯ãĢ寞ããĻåŽæ°ãĒãŽã§ããĢ寞ãããŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 2.2.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 2.2.3
ãĢããããžãã
ãšããã 2.3
ãŽå¤ãæąããžãã
ãšããã 2.3.1
ã¯ãĢ寞ããĻåŽæ°ãĒãŽã§ããĢ寞ãããŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 2.3.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 2.3.3
ãĢããããžãã
ãšããã 3
垎åäŋæ°ãã¨įããããåŧãč§ŖããĻéĸæ°ãŽæĨĩ大å¤ã¨æå°å¤ãæąããžãã
ãšããã 4
ãšããã 4.1
䏿ŦĄå°éĸæ°ãæąããžãã
ãšããã 4.1.1
垎åããžãã
ãšããã 4.1.1.1
įˇååã§ã¯ããŽãĢéĸããįŠåã¯ã§ãã
ãšããã 4.1.1.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 4.1.2
ãŽå¤ãæąããžãã
ãšããã 4.1.2.1
ã¯ãĢ寞ããĻåŽæ°ãĒãŽã§ããĢ寞ãããŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 4.1.2.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 4.1.2.3
ãĢããããžãã
ãšããã 4.2
ãĢéĸãããŽä¸æŦĄå°éĸæ°ã¯ã§ãã
ãšããã 5
ãšããã 5.1
䏿ŦĄå°éĸæ°ããĢįããããžãã
ãšããã 5.2
ãã§å æ°åč§Ŗããžãã
ãšããã 5.2.1
ãã§å æ°åč§Ŗããžãã
ãšããã 5.2.2
ãã§å æ°åč§Ŗããžãã
ãšããã 5.2.3
ãã§å æ°åč§Ŗããžãã
ãšããã 5.3
æšį¨åŧãŽåˇĻčžēãŽåã
ãŽå æ°ãã¨įãããĒãã°ãåŧå
¨äŊã¯ã¨įãããĒããžãã
ãšããã 5.4
ããĢįãããããč§Ŗããžãã
ãšããã 5.4.1
ããĢįããã¨ããžãã
ãšããã 5.4.2
ãĢã¤ããĻãč§Ŗããžãã
ãšããã 5.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ãšããã 5.4.2.2
ãį°Ąį´ããžãã
ãšããã 5.4.2.2.1
ããĢæ¸ãæããžãã
ãšããã 5.4.2.2.2
æŖãŽåŽæ°ã¨äģŽåŽããĻãį´¯äšæ šãŽä¸ããé
ãåãåēããžãã
ãšããã 5.4.2.2.3
ããŠãšãã¤ããšã¯ã§ãã
ãšããã 5.5
ããĢįãããããč§Ŗããžãã
ãšããã 5.5.1
ããĢįããã¨ããžãã
ãšããã 5.5.2
ãĢã¤ããĻãč§Ŗããžãã
ãšããã 5.5.2.1
æšį¨åŧãŽä¸ĄčžēãĢãčļŗããžãã
ãšããã 5.5.2.2
ãŽåé
ãã§å˛ããį°Ąį´ããžãã
ãšããã 5.5.2.2.1
ãŽåé
ãã§å˛ããžãã
ãšããã 5.5.2.2.2
åˇĻčžēãį°Ąį´ããžãã
ãšããã 5.5.2.2.2.1
ãŽå
ąéå æ°ãį´åããžãã
ãšããã 5.5.2.2.2.1.1
å
ąéå æ°ãį´åããžãã
ãšããã 5.5.2.2.2.1.2
ãã§å˛ããžãã
ãšããã 5.5.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ãšããã 5.5.2.4
ãį°Ąį´ããžãã
ãšããã 5.5.2.4.1
ããĢæ¸ãæããžãã
ãšããã 5.5.2.4.2
ãĢããããžãã
ãšããã 5.5.2.4.3
忝ãįĩãŋåãããĻį°Ąį´ããžãã
ãšããã 5.5.2.4.3.1
ãĢããããžãã
ãšããã 5.5.2.4.3.2
ãäšããžãã
ãšããã 5.5.2.4.3.3
ãäšããžãã
ãšããã 5.5.2.4.3.4
ãšãäšåãåŠį¨ããĻææ°ãįĩãŋåãããžãã
ãšããã 5.5.2.4.3.5
ã¨ãããįŽããžãã
ãšããã 5.5.2.4.3.6
ããĢæ¸ãæããžãã
ãšããã 5.5.2.4.3.6.1
ãåŠį¨ããããĢæ¸ãæããžãã
ãšããã 5.5.2.4.3.6.2
ãšãäšåãåŊãĻã¯ããĻãææ°ãããįŽããžãã
ãšããã 5.5.2.4.3.6.3
ã¨ããžã¨ããžãã
ãšããã 5.5.2.4.3.6.4
ãŽå
ąéå æ°ãį´åããžãã
ãšããã 5.5.2.4.3.6.4.1
å
ąéå æ°ãį´åããžãã
ãšããã 5.5.2.4.3.6.4.2
åŧãæ¸ãæããžãã
ãšããã 5.5.2.4.3.6.5
ææ°ãæąããžãã
ãšããã 5.5.2.4.4
ååãį°Ąį´ããžãã
ãšããã 5.5.2.4.4.1
æ šãŽįŠãŽæŗåãäŊŋãŖãĻãžã¨ããžãã
ãšããã 5.5.2.4.4.2
ãĢããããžãã
ãšããã 5.5.2.5
åŽå
¨č§Ŗã¯ãč§ŖãŽæŖã¨č˛ ãŽé¨åãŽä¸ĄæšãŽč¨įŽįĩæã§ãã
ãšããã 5.5.2.5.1
ãžãããŽæŖãŽæ°ãåŠį¨ãã1įĒįŽãŽč§Ŗãæąããžãã
ãšããã 5.5.2.5.2
æŦĄãĢããŽč˛ ãŽå¤ãåŠį¨ãã2įĒįŽãŽč§Ŗãæąããžãã
ãšããã 5.5.2.5.3
åŽå
¨č§Ŗã¯ãč§ŖãŽæŖã¨č˛ ãŽé¨åãŽä¸ĄæšãŽč¨įŽįĩæã§ãã
ãšããã 5.6
æįĩč§Ŗã¯ãįãĢããããšãĻãŽå¤ã§ãã
ãšããã 6
ãšããã 6.1
åŧãŽåŽįžŠåã¯ãåŧãæĒåŽįžŠãŽå ´åãé¤ããããšãĻãŽåŽæ°ã§ããããŽå ´åãåŧãæĒåŽįžŠãĢãĒããããĒåŽæ°ã¯ãããžããã
ãšããã 7
å¤ãæąããč¨įįšã§ãã
ãšããã 8
ã§äēæŦĄå°éĸæ°ãŽå¤ãæąããžããäēæŦĄå°éĸæ°ãæŖãŽã¨ããããŽå¤ãæĨĩå°å¤ã§ããäēæŦĄå°éĸæ°ãč˛ ãŽæãããŽå¤ãæĨĩ大å¤ã§ãã
ãšããã 9
ãšããã 9.1
åé
ãį°Ąį´ããžãã
ãšããã 9.1.1
ãæŖæ°äšãããåžãžãã
ãšããã 9.1.2
ãĢããããžãã
ãšããã 9.1.3
ãæŖæ°äšãããåžãžãã
ãšããã 9.1.4
ãĢããããžãã
ãšããã 9.2
ã¨ãããįŽããžãã
ãšããã 10
ãšããã 10.1
䏿ŦĄå°éĸæ°ãžãã¯æĒåŽįžŠãĢãĒãå¤ãŽå¨å˛ã§ããåéĸåēéãĢåå˛ããžãã
ãšããã 10.2
䏿ŦĄå°éĸæ°ãŽåēéãããĒãŠãŽäģģæãŽæ°ãäģŖå
Ĩããįĩæãč˛ ãæŖãįĸēčĒããžãã
ãšããã 10.2.1
åŧãŽå¤æ°ãã§įŊŽæããžãã
ãšããã 10.2.2
įĩæãį°Ąį´ããžãã
ãšããã 10.2.2.1
åé
ãį°Ąį´ããžãã
ãšããã 10.2.2.1.1
ãäšããžãã
ãšããã 10.2.2.1.2
ãĢããããžãã
ãšããã 10.2.2.1.3
ãäšããžãã
ãšããã 10.2.2.1.4
ãĢããããžãã
ãšããã 10.2.2.2
ãããåŧããžãã
ãšããã 10.2.2.3
æįĩįãĒįãã¯ã§ãã
ãšããã 10.3
䏿ŦĄå°éĸæ°ãŽåēéãããĒãŠãŽäģģæãŽæ°ãäģŖå
Ĩããįĩæãč˛ ãæŖãįĸēčĒããžãã
ãšããã 10.3.1
åŧãŽå¤æ°ãã§įŊŽæããžãã
ãšããã 10.3.2
įĩæãį°Ąį´ããžãã
ãšããã 10.3.2.1
åé
ãį°Ąį´ããžãã
ãšããã 10.3.2.1.1
ãäšããžãã
ãšããã 10.3.2.1.2
ãĢããããžãã
ãšããã 10.3.2.1.3
ãäšããžãã
ãšããã 10.3.2.1.4
ãĢããããžãã
ãšããã 10.3.2.2
ãããåŧããžãã
ãšããã 10.3.2.3
æįĩįãĒįãã¯ã§ãã
ãšããã 10.4
䏿ŦĄå°éĸæ°ãŽåēéãããĒãŠãŽäģģæãŽæ°ãäģŖå
Ĩããįĩæãč˛ ãæŖãįĸēčĒããžãã
ãšããã 10.4.1
åŧãŽå¤æ°ãã§įŊŽæããžãã
ãšããã 10.4.2
įĩæãį°Ąį´ããžãã
ãšããã 10.4.2.1
åé
ãį°Ąį´ããžãã
ãšããã 10.4.2.1.1
1ãŽããšãĻãŽæ°ãŽį´¯äšã¯1ã§ãã
ãšããã 10.4.2.1.2
ãĢããããžãã
ãšããã 10.4.2.1.3
1ãŽããšãĻãŽæ°ãŽį´¯äšã¯1ã§ãã
ãšããã 10.4.2.1.4
ãĢããããžãã
ãšããã 10.4.2.2
ãããåŧããžãã
ãšããã 10.4.2.3
æįĩįãĒįãã¯ã§ãã
ãšããã 10.5
䏿ŦĄå°éĸæ°ãŽåēéãããĒãŠãŽäģģæãŽæ°ãäģŖå
Ĩããįĩæãč˛ ãæŖãįĸēčĒããžãã
ãšããã 10.5.1
åŧãŽå¤æ°ãã§įŊŽæããžãã
ãšããã 10.5.2
įĩæãį°Ąį´ããžãã
ãšããã 10.5.2.1
åé
ãį°Ąį´ããžãã
ãšããã 10.5.2.1.1
ãäšããžãã
ãšããã 10.5.2.1.2
ãĢããããžãã
ãšããã 10.5.2.1.3
ãäšããžãã
ãšããã 10.5.2.1.4
ãĢããããžãã
ãšããã 10.5.2.2
ãããåŧããžãã
ãšããã 10.5.2.3
æįĩįãĒįãã¯ã§ãã
ãšããã 10.6
ãŽå¨å˛ã§ä¸æŦĄå°éĸæ°ãŽįŦĻåˇãæŖããč˛ ãĢå¤åãããŽã§ãã¯æĨĩ大å¤ã§ãã
ã¯æĨĩ大å¤ã§ã
ãšããã 10.7
ãŽå¨å˛ã§ä¸æŦĄå°éĸæ°ãŽįŦĻåˇãå¤åããĒããŖããŽã§ãããã¯æĨĩ大å¤ãžãã¯æĨĩå°å¤ã§ã¯ãããžããã
æĨĩ大å¤ãžãã¯æĨĩå°å¤ã§ã¯ãããžãã
ãšããã 10.8
ãŽå¨å˛ã§ä¸æŦĄå°éĸæ°ãŽįŦĻåˇãč˛ ããæŖãĢå¤åãããŽã§ãã¯æĨĩå°å¤ã§ãã
ã¯æĨĩå°å¤ã§ã
ãšããã 10.9
ãŽæĨĩå¤ã§ãã
ã¯æĨĩ大å¤ã§ã
ã¯æĨĩå°å¤ã§ã
ã¯æĨĩ大å¤ã§ã
ã¯æĨĩå°å¤ã§ã
ãšããã 11