問題を入力...
微分積分 例
ステップ 1
がに近づいたら、極限で極限の商の法則を利用して極限を分割します。
ステップ 2
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 3
の項はに対して一定なので、極限の外に移動させます。
ステップ 4
指数に極限を移動させます。
ステップ 5
がに近づいたら、極限で極限の商の法則を利用して極限を分割します。
ステップ 6
がに近づくと定数であるの極限値を求めます。
ステップ 7
の項はに対して一定なので、極限の外に移動させます。
ステップ 8
がに近づいたら、極限で極限の商の法則を利用して極限を分割します。
ステップ 9
がに近づくと定数であるの極限値を求めます。
ステップ 10
ステップ 10.1
をに代入し、の極限値を求めます。
ステップ 10.2
をに代入し、の極限値を求めます。
ステップ 10.3
をに代入し、の極限値を求めます。
ステップ 11
ステップ 11.1
分子に分母の逆数を掛けます。
ステップ 11.2
にをかけます。
ステップ 11.3
分配則を当てはめます。
ステップ 11.4
にをかけます。
ステップ 11.5
にをかけます。
ステップ 12
結果は複数の形で表すことができます。
完全形:
10進法形式: