問題を入力...
微分積分 例
ステップ 1
をで割ります。
ステップ 2
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 3
根号の下に極限を移動させます。
ステップ 4
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 5
がに近づくと定数であるの極限値を求めます。
ステップ 6
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 7
ステップ 7.1
をに代入し、の極限値を求めます。
ステップ 7.2
をに代入し、の極限値を求めます。
ステップ 8
ステップ 8.1
を乗します。
ステップ 8.2
にをかけます。
ステップ 8.3
からを引きます。
ステップ 8.4
をに書き換えます。
ステップ 8.4.1
をに書き換えます。
ステップ 8.4.2
をに書き換えます。
ステップ 8.5
累乗根の下から項を取り出します。
ステップ 8.6
をに書き換えます。
ステップ 8.7
を掛けます。
ステップ 8.7.1
にをかけます。
ステップ 8.7.2
にをかけます。
ステップ 9
結果は複数の形で表すことができます。
完全形:
10進法形式: