問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
分子と分母の極限値を求めます。
ステップ 1.1.1
分子と分母の極限値をとります。
ステップ 1.1.2
がに近づくと定数であるの極限値を求めます。
ステップ 1.1.3
をに代入し、の極限値を求めます。
ステップ 1.1.4
による除算を含む式です。式は未定義です。
未定義
ステップ 1.2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 1.3
分子と分母の微分係数を求めます。
ステップ 1.3.1
分母と分子を微分します。
ステップ 1.3.2
はについて定数なので、についての微分係数はです。
ステップ 1.3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.4
をで割ります。
ステップ 2
がに近づくと定数であるの極限値を求めます。