微分積分 例

積分値を求める xに対して8cos(2x)^3の積分
ステップ 1
に対して定数なので、を積分の外に移動させます。
ステップ 2
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 2.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.1
を微分します。
ステップ 2.1.2
に対して定数なので、に対するの微分係数はです。
ステップ 2.1.3
のとき、であるというべき乗則を使って微分します。
ステップ 2.1.4
をかけます。
ステップ 2.2
を利用して問題を書き換えます。
ステップ 3
をまとめます。
ステップ 4
に対して定数なので、を積分の外に移動させます。
ステップ 5
簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
をまとめます。
ステップ 5.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.1
で因数分解します。
ステップ 5.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
で因数分解します。
ステップ 5.2.2.2
共通因数を約分します。
ステップ 5.2.2.3
式を書き換えます。
ステップ 5.2.2.4
で割ります。
ステップ 6
を因数分解します。
ステップ 7
ピタゴラスの恒等式を利用して、に書き換えます。
ステップ 8
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 8.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 8.1.1
を微分します。
ステップ 8.1.2
に関するの微分係数はです。
ステップ 8.2
を利用して問題を書き換えます。
ステップ 9
単一積分を複数積分に分割します。
ステップ 10
定数の法則を当てはめます。
ステップ 11
に対して定数なので、を積分の外に移動させます。
ステップ 12
べき乗則では、に関する積分はです。
ステップ 13
簡約します。
ステップ 14
各積分に置換変数を戻し入れます。
タップして手順をさらに表示してください…
ステップ 14.1
のすべての発生をで置き換えます。
ステップ 14.2
のすべての発生をで置き換えます。