ๅพฎๅˆ†็ฉๅˆ† ไพ‹

水平方向の接線を求める x^2+y^2=26y
ใ‚นใƒ†ใƒƒใƒ— 1
Solve the equation as in terms of .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.1
ๆ–น็จ‹ๅผใฎไธก่พบใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2
ไบŒๆฌกๆ–น็จ‹ๅผใฎ่งฃใฎๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆ่งฃใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3
ใ€ใ€ใŠใ‚ˆใณใ‚’ไบŒๆฌกๆ–น็จ‹ๅผใฎ่งฃใฎๅ…ฌๅผใซไปฃๅ…ฅใ—ใ€ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.1
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.2
ไธก้ …ใจใ‚‚ๅฎŒๅ…จๅนณๆ–นใชใฎใงใ€ๅนณๆ–นใฎๅทฎใฎๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆใ€ๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚ใ“ใฎใจใใ€ใงใ‚ใ‚Šใ€ใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.3
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.3.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.3.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.3.2.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.3.2.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.3.3
ๆŒ‡ๆ•ฐใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.3.3.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.3.3.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.4
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.4.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.4.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.4.3
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.5
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.6
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.6.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.6.2
ๆ‹ฌๅผงใ‚’ไป˜ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.1.7
็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.3
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5
ๅผใ‚’็ฐก็ด„ใ—ใ€ใฎ้ƒจใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.5.1
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.2
ไธก้ …ใจใ‚‚ๅฎŒๅ…จๅนณๆ–นใชใฎใงใ€ๅนณๆ–นใฎๅทฎใฎๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆใ€ๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚ใ“ใฎใจใใ€ใงใ‚ใ‚Šใ€ใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.3
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.3.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.3.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.3.2.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.3.2.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.3.3
ๆŒ‡ๆ•ฐใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.3.3.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.3.3.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.4
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.4.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.4.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.4.3
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.5
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.6
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.6.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.6.2
ๆ‹ฌๅผงใ‚’ไป˜ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.1.7
็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.3
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.4
ใ‚’ใซๅค‰ๆ›ดใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6
ๅผใ‚’็ฐก็ด„ใ—ใ€ใฎ้ƒจใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.6.1
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.2
ไธก้ …ใจใ‚‚ๅฎŒๅ…จๅนณๆ–นใชใฎใงใ€ๅนณๆ–นใฎๅทฎใฎๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆใ€ๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚ใ“ใฎใจใใ€ใงใ‚ใ‚Šใ€ใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.3
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.3.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.3.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.3.2.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.3.2.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.3.3
ๆŒ‡ๆ•ฐใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.3.3.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.3.3.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.4
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.4.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.4.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.4.3
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.5
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.6
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.6.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.6.2
ๆ‹ฌๅผงใ‚’ไป˜ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.1.7
็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.3
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.6.4
ใ‚’ใซๅค‰ๆ›ดใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.7
ๆœ€็ต‚็š„ใช็ญ”ใˆใฏไธกๆ–นใฎ่งฃใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2
Set each solution of as a function of .
ใ‚นใƒ†ใƒƒใƒ— 3
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1
ๆ–น็จ‹ๅผใฎไธก่พบใ‚’ๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2
ๆ–น็จ‹ๅผใฎๅทฆ่พบใ‚’ๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.1
ๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.1.1
็ทๅ’Œๅ‰‡ใงใฏใ€ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.1.2
ใฎใจใใ€ใฏใงใ‚ใ‚‹ใจใ„ใ†ในใไน—ๅ‰‡ใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2
ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1
ใŠใ‚ˆใณใฎใจใใ€ใฏใงใ‚ใ‚‹ใจใ„ใ†้€ฃ้Ž–ๅพ‹ใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1
้€ฃ้Ž–ๅพ‹ใ‚’ๅฝ“ใฆใฏใ‚ใ‚‹ใŸใ‚ใซใ€ใ‚’ใจใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.2
ใฎใจใใ€ใฏใงใ‚ใ‚‹ใจใ„ใ†ในใไน—ๅ‰‡ใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.3
ใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.2
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.3
้ …ใ‚’ไธฆในๆ›ฟใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3
ๆ–น็จ‹ๅผใฎๅณ่พบใ‚’ๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.3.1
ใฏใซๅฏพใ—ใฆๅฎšๆ•ฐใชใฎใงใ€ใซๅฏพใ™ใ‚‹ใฎๅพฎๅˆ†ไฟ‚ๆ•ฐใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4
ๅทฆ่พบใจๅณ่พบใ‚’็ญ‰ใ—ใใ—ใ€ๅผใ‚’ไฝœใ‚Šๅค‰ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5
ใซใคใ„ใฆ่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.1
ๆ–น็จ‹ๅผใฎไธก่พบใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.2
ๆ–น็จ‹ๅผใฎไธก่พบใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.3
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.3.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.3.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.3.3
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.4
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใ€็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.2.1
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.2.1.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.2.1.2
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.2.2
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.2.2.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.2.2.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.3.1
ใจใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.3.1.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.3.1.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.3.1.2.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.3.1.2.2
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.4.3.2
ๅˆ†ๆ•ฐใฎๅ‰ใซ่ฒ ๆ•ฐใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.6
ใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4
ๅˆ†ๅญใ‚’0ใซ็ญ‰ใ—ใใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5
Solve the function at .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.1
ๅผใฎๅค‰ๆ•ฐใ‚’ใง็ฝฎๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2
็ตๆžœใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.2.1
ๆ‹ฌๅผงใ‚’ๅ‰Š้™คใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.2
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.2.2.1
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.2.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.2.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.2.5
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.2.6
ๆญฃใฎๅฎŸๆ•ฐใจไปฎๅฎšใ—ใฆใ€็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.4
ๆœ€็ต‚็š„ใช็ญ”ใˆใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6
Solve the function at .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.1
ๅผใฎๅค‰ๆ•ฐใ‚’ใง็ฝฎๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2
็ตๆžœใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.1
ๆ‹ฌๅผงใ‚’ๅ‰Š้™คใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.2
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.2.1
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.2.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.2.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.2.5
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.2.6
ๆญฃใฎๅฎŸๆ•ฐใจไปฎๅฎšใ—ใฆใ€็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.2.7
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.3
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.4
ๆœ€็ต‚็š„ใช็ญ”ใˆใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7
The horizontal tangent lines are
ใ‚นใƒ†ใƒƒใƒ— 8