ๅพฎๅˆ†็ฉๅˆ† ไพ‹

曲線間の面積を求める y=x^2-3x , y=3x+7
,
ใ‚นใƒ†ใƒƒใƒ— 1
ไปฃๅ…ฅใง่งฃใๆ›ฒ็ทš้–“ใฎไบค็‚นใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.1
ๅ„ๆ–น็จ‹ๅผใฎ็ญ‰่พบใ‚’ๆถˆๅŽปใ—ใ€็ต„ใฟๅˆใ‚ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2
ใซใคใ„ใฆใ‚’่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.2.1
ใ‚’ๅซใ‚€ใ™ในใฆใฎ้ …ใ‚’ๆ–น็จ‹ๅผใฎๅทฆ่พบใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.2.1.1
ๆ–น็จ‹ๅผใฎไธก่พบใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.1.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.2
ๆ–น็จ‹ๅผใฎไธก่พบใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.3
ใŸใ™ใๆŽ›ใ‘ใ‚’ๅˆฉ็”จใ—ใฆใ‚’ๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.2.3.1
ใฎๅฝขๅผใ‚’่€ƒใˆใพใ™ใ€‚็ฉใŒใงๅ’ŒใŒใงใ‚ใ‚‹ๆ•ดๆ•ฐใฎ็ต„ใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚ใ“ใฎใจใใ€ใใฎ็ฉใŒใงใ€ใใฎๅ’ŒใŒใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.3.2
ใ“ใฎๆ•ดๆ•ฐใ‚’ๅˆฉ็”จใ—ใฆๅ› ๆ•ฐๅˆ†่งฃใฎๅฝขใ‚’ๆ›ธใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.4
ๆ–น็จ‹ๅผใฎๅทฆ่พบใฎๅ€‹ใ€…ใฎๅ› ๆ•ฐใŒใจ็ญ‰ใ—ใ„ใชใ‚‰ใฐใ€ๅผๅ…จไฝ“ใฏใจ็ญ‰ใ—ใใชใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.5
ใ‚’ใซ็ญ‰ใ—ใใ—ใ€ใ‚’่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.2.5.1
ใŒใซ็ญ‰ใ—ใ„ใจใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.5.2
ๆ–น็จ‹ๅผใฎไธก่พบใซใ‚’่ถณใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.6
ใ‚’ใซ็ญ‰ใ—ใใ—ใ€ใ‚’่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.2.6.1
ใŒใซ็ญ‰ใ—ใ„ใจใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.6.2
ๆ–น็จ‹ๅผใฎไธก่พบใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.7
ๆœ€็ต‚่งฃใฏใ‚’็œŸใซใ™ใ‚‹ใ™ในใฆใฎๅ€คใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3
ใฎใจใใ€ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.3.1
ใ‚’ใซไปฃๅ…ฅใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3.2
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.3.2.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3.2.2
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4
ใฎใจใใ€ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.1
ใ‚’ใซไปฃๅ…ฅใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.2
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.2.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.2.2
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5
ๅผใฎ่งฃใฏใ€ๆœ‰ๅŠนใช่งฃใงใ‚ใ‚‹้ †ๅบๅฏพใฎๅฎŒๅ…จ้›†ๅˆใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2
ๆ›ฒ็ทš้–“ใฎ้ ˜ๅŸŸใฎ้ข็ฉใฏใ€ๅ„้ ˜ๅŸŸใซใŠใ‘ใ‚‹ไธŠใฎๆ›ฒ็ทšใฎ็ฉๅˆ†ใ‹ใ‚‰ไธ‹ใฎๆ›ฒ็ทšใฎ็ฉๅˆ†ใ‚’ๅทฎใ—ๅผ•ใ„ใŸใ‚‚ใฎใจใ—ใฆๅฎš็พฉใ•ใ‚Œใพใ™ใ€‚้ ˜ๅŸŸใฏใ€ๆ›ฒ็ทšใฎไบค็‚นใงๆฑบๅฎšใ—ใพใ™ใ€‚ใ“ใ‚Œใฏใ€ไปฃๆ•ฐ่จˆ็ฎ—ใพใŸใฏใ‚ฐใƒฉใƒ•ใง่กŒใ†ใ“ใจใŒใงใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3
็ฉๅˆ†ใ—ใ€ใจใฎ้–“ใฎ้ข็ฉใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1
็ฉๅˆ†ใ‚’1ใคใซใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.1
ๅˆ†้…ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4
ๅ˜ไธ€็ฉๅˆ†ใ‚’่ค‡ๆ•ฐ็ฉๅˆ†ใซๅˆ†ๅ‰ฒใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5
ใฏใซๅฏพใ—ใฆๅฎšๆ•ฐใชใฎใงใ€ใ‚’็ฉๅˆ†ใฎๅค–ใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.6
ในใไน—ๅ‰‡ใงใฏใ€ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.7
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.8
ๅฎšๆ•ฐใฎๆณ•ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.9
ใฏใซๅฏพใ—ใฆๅฎšๆ•ฐใชใฎใงใ€ใ‚’็ฉๅˆ†ใฎๅค–ใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.10
ในใไน—ๅ‰‡ใงใฏใ€ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11
็ญ”ใˆใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.11.1
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2
ไปฃๅ…ฅใ—็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.1
ใŠใ‚ˆใณใงใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.2
ใŠใ‚ˆใณใงใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.3
ใŠใ‚ˆใณใงใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.1
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.2
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.3
ๅ…ฌๅˆ†ๆฏใฎๅˆ†ๅญใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.4
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.5
ใจใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.5.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.5.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.5.2.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.5.2.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.5.2.3
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.5.2.4
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.6
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.7
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.8
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.9
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.10
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.11
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.12
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.13
ๅˆ†ๆ•ฐใฎๅ‰ใซ่ฒ ๆ•ฐใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.14
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.15
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.16
ๅ…ฌๅˆ†ๆฏใฎๅˆ†ๅญใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.17
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.18
ใ‚’ๅ…ฌๅˆ†ๆฏใฎใ‚ใ‚‹ๅˆ†ๆ•ฐใจใ—ใฆๆ›ธใใŸใ‚ใซใ€ใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.19
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.20
ๅ…ฌๅˆ†ๆฏใฎๅˆ†ๅญใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.21
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.21.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.11.2.4.21.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4