ๅพฎๅˆ†็ฉๅˆ† ไพ‹

Найти производную - d/dx y=2x( x-x^2+3x-5)の平方根
ใ‚นใƒ†ใƒƒใƒ— 1
ๅฎšๆ•ฐๅ€ใฎๅ…ฌๅผใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.1
ใ‚’ๅˆฉ็”จใ—ใ€ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2
ใฏใซๅฏพใ—ใฆๅฎšๆ•ฐใชใฎใงใ€ใซๅฏพใ™ใ‚‹ใฎๅพฎๅˆ†ไฟ‚ๆ•ฐใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2
ใŠใ‚ˆใณใฎใจใใ€ใฏใงใ‚ใ‚‹ใจใ„ใ†็ฉใฎๆณ•ๅ‰‡ใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3
ๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1
็ทๅ’Œๅ‰‡ใงใฏใ€ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2
ใฎใจใใ€ใฏใงใ‚ใ‚‹ใจใ„ใ†ในใไน—ๅ‰‡ใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4
ใ‚’ๅ…ฌๅˆ†ๆฏใฎใ‚ใ‚‹ๅˆ†ๆ•ฐใจใ—ใฆๆ›ธใใŸใ‚ใซใ€ใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6
ๅ…ฌๅˆ†ๆฏใฎๅˆ†ๅญใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 8
ๅˆ†ๆ•ฐใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 8.1
ๅˆ†ๆ•ฐใฎๅ‰ใซ่ฒ ๆ•ฐใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 8.2
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 8.3
่ฒ ใฎๆŒ‡ๆ•ฐๆณ•ๅ‰‡ใ‚’ๅˆฉ็”จใ—ใฆใ‚’ๅˆ†ๆฏใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 9
ใฏใซๅฏพใ—ใฆๅฎšๆ•ฐใชใฎใงใ€ใซๅฏพใ™ใ‚‹ใฎๅพฎๅˆ†ไฟ‚ๆ•ฐใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10
ใฎใจใใ€ใฏใงใ‚ใ‚‹ใจใ„ใ†ในใไน—ๅ‰‡ใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 11
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 12
ใฏใซๅฏพใ—ใฆๅฎšๆ•ฐใชใฎใงใ€ใซๅฏพใ™ใ‚‹ใฎๅพฎๅˆ†ไฟ‚ๆ•ฐใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 13
ใฎใจใใ€ใฏใงใ‚ใ‚‹ใจใ„ใ†ในใไน—ๅ‰‡ใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 14
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 15
ใฏใซใคใ„ใฆๅฎšๆ•ฐใชใฎใงใ€ใซใคใ„ใฆใฎๅพฎๅˆ†ไฟ‚ๆ•ฐใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 16
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 17
ใฎใจใใ€ใฏใงใ‚ใ‚‹ใจใ„ใ†ในใไน—ๅ‰‡ใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 18
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 19.1
ๅˆ†้…ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.2
ๅˆ†้…ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3
้ …ใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 19.3.1
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.2
่ฒ ใฎๆŒ‡ๆ•ฐๆณ•ๅ‰‡ใ‚’ๅˆฉ็”จใ—ใฆใ‚’ๅˆ†ๅญใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.3
ๆŒ‡ๆ•ฐใ‚’่ถณใ—ใฆใซใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 19.3.3.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 19.3.3.1.1
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.3.1.2
ในใไน—ๅ‰‡ใ‚’ๅˆฉ็”จใ—ใฆๆŒ‡ๆ•ฐใ‚’็ต„ใฟๅˆใ‚ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.3.2
ใ‚’ๅ…ฌๅˆ†ๆฏใ‚’ใ‚‚ใคๅˆ†ๆ•ฐใงๆ›ธใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.3.3
ๅ…ฌๅˆ†ๆฏใฎๅˆ†ๅญใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.3.4
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.4
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.5
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.6
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.7
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.8
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.9
ในใไน—ๅ‰‡ใ‚’ๅˆฉ็”จใ—ใฆๆŒ‡ๆ•ฐใ‚’็ต„ใฟๅˆใ‚ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.10
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.11
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.12
ใ‚’ใฎๅทฆใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.13
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.14
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.15
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.16
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.17
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.18
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 19.3.19
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚