ๅพฎๅˆ†็ฉๅˆ† ไพ‹

u置換を用いた積分 x^3 x^2+4の立方根のxについての積分
ใ‚นใƒ†ใƒƒใƒ— 1
ใจใ—ใพใ™ใ€‚ๆฌกใซใ™ใ‚‹ใจใ€ใงใ™ใ€‚ใจใ‚’ๅˆฉ็”จใ—ใฆๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.1
ใจใ—ใพใ™ใ€‚ใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.1.1
ใ‚’ๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.1.2
็ทๅ’Œๅ‰‡ใงใฏใ€ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.1.3
ใฎใจใใ€ใฏใงใ‚ใ‚‹ใจใ„ใ†ในใไน—ๅ‰‡ใ‚’ไฝฟใฃใฆๅพฎๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.1.4
ใฏใซใคใ„ใฆๅฎšๆ•ฐใชใฎใงใ€ใซใคใ„ใฆใฎๅพฎๅˆ†ไฟ‚ๆ•ฐใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.1.5
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2
ใจใ‚’ๅˆฉ็”จใ—ใฆๅ•้กŒใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2
ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.1
ใ‚’ๅˆฉ็”จใ—ใ€ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.2
ในใไน—ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใฆใ€ๆŒ‡ๆ•ฐใ‚’ใ‹ใ‘็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.3
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.4
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.4.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.4.2
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.5
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2
ใ‚’ๅˆฉ็”จใ—ใ€ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1
ๅˆ†้…ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4
ในใไน—ๅ‰‡ใ‚’ๅˆฉ็”จใ—ใฆๆŒ‡ๆ•ฐใ‚’็ต„ใฟๅˆใ‚ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5
ใ‚’ๅ…ฌๅˆ†ๆฏใ‚’ใ‚‚ใคๅˆ†ๆ•ฐใงๆ›ธใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.6
ๅ…ฌๅˆ†ๆฏใฎๅˆ†ๅญใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.7
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.8
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.2.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.2.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.2.3
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.2.4
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5
ๅ˜ไธ€็ฉๅˆ†ใ‚’่ค‡ๆ•ฐ็ฉๅˆ†ใซๅˆ†ๅ‰ฒใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6
ใฏใซๅฏพใ—ใฆๅฎšๆ•ฐใชใฎใงใ€ใ‚’็ฉๅˆ†ใฎๅค–ใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7
ในใไน—ๅ‰‡ใงใฏใ€ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 8
ใฏใซๅฏพใ—ใฆๅฎšๆ•ฐใชใฎใงใ€ใ‚’็ฉๅˆ†ใฎๅค–ใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 9
ในใไน—ๅ‰‡ใงใฏใ€ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 10.1
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10.2
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10.3
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 10.3.1
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10.3.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10.3.3
ใจใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 10.3.3.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10.3.3.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 10.3.3.2.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10.3.3.2.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10.3.3.2.3
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 10.3.4
ๅˆ†ๆ•ฐใฎๅ‰ใซ่ฒ ๆ•ฐใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 11
ใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚