ๅพฎๅˆ†็ฉๅˆ† ไพ‹

微分方程式を解きます (dx)/(dy)=(1+2y^2)/(ysin(x))
ใ‚นใƒ†ใƒƒใƒ— 1
ๅค‰ๆ•ฐใ‚’ๅˆ†ใ‘ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.1
ๅ› ๆ•ฐใ‚’ใ‚‚ใ†ไธ€ๅบฆใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2
ไธก่พบใซใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.3.1
ใ‚’ใซๅค‰ๆ›ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3.2
ๆญฃๅผฆใจไฝ™ๅผฆใซใคใ„ใฆๆ›ธใๆ›ใˆใ€ๆฌกใซๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.3.2.1
ใจใ‚’ไธฆในๆ›ฟใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3.2.2
ๆ‹ฌๅผงใ‚’ไป˜ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3.2.3
ๆญฃๅผฆใจไฝ™ๅผฆใซ้–ขใ—ใฆใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3.2.4
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4
ๆ–น็จ‹ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2
ไธก่พบใ‚’็ฉๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1
ๅ„่พบใฎ็ฉๅˆ†ใ‚’่จญๅฎšใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2
ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3
ๅณ่พบใ‚’็ฉๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.1
ๅˆ†ๆ•ฐใ‚’่ค‡ๆ•ฐใฎๅˆ†ๆ•ฐใซๅˆ†ๅ‰ฒใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2
ๅ˜ไธ€็ฉๅˆ†ใ‚’่ค‡ๆ•ฐ็ฉๅˆ†ใซๅˆ†ๅ‰ฒใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.3
ใจใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.3.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.3.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.3.2.1
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.3.2.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.3.2.3
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.3.2.4
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.3.2.5
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.4
ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.5
ใฏใซๅฏพใ—ใฆๅฎšๆ•ฐใชใฎใงใ€ใ‚’็ฉๅˆ†ใฎๅค–ใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.6
ในใไน—ๅ‰‡ใงใฏใ€ใฎใซ้–ขใ™ใ‚‹็ฉๅˆ†ใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.7
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.7.1
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.7.2
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.7.2.1
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.7.2.2
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.7.2.2.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.7.2.2.2
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.7.2.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.8
้ …ใ‚’ไธฆในๆ›ฟใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4
ๅณ่พบใฎ็ฉๅˆ†ๅฎšๆ•ฐใ‚’ใจใ—ใฆใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3
ใซใคใ„ใฆ่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใ€็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1
2ใคใฎ่ฒ ใฎๅ€คใ‚’ๅ‰ฒใ‚‹ใจๆญฃใฎๅ€คใซใชใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.3.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.3.1.1
ใฎๅˆ†ๆฏใ‹ใ‚‰ใƒžใ‚คใƒŠใ‚น1ใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.3.1.2
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.3.1.3
ใฎๅˆ†ๆฏใ‹ใ‚‰ใƒžใ‚คใƒŠใ‚น1ใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.3.1.4
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.3.1.5
ใฎๅˆ†ๆฏใ‹ใ‚‰ใƒžใ‚คใƒŠใ‚น1ใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.3.1.6
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2
ๆ–น็จ‹ๅผใฎไธก่พบใฎ้€†ไฝ™ๅผฆใ‚’ใจใ‚Šใ€ไฝ™ๅผฆใฎไธญใ‹ใ‚‰ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4
็ฉๅˆ†ๅฎšๆ•ฐใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚