問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 1.2
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 2
がに左から近づくとき、分子が定数で分母がに近づくので、分数は負の無限大に近づきます。
ステップ 3
をに代入し、の極限値を求めます。
ステップ 4
ステップ 4.1
各項を簡約します。
ステップ 4.1.1
を正数乗し、を得ます。
ステップ 4.1.2
0でない定数に無限大倍すると無限大です。
ステップ 4.2
とをたし算します。