微分積分 例

曲線間の面積を求める y=x^2
ステップ 1
代入で解き曲線間の交点を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
各方程式の等辺を消去し、組み合わせます。
ステップ 1.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 1.2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
に書き換えます。
ステップ 1.2.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 1.2.2.3
プラスマイナスです。
ステップ 1.3
に代入します。
ステップ 1.4
式の解は、有効な解である順序対の完全集合です。
ステップ 2
与えられた曲線間の面積は非有界です。
有界でない面積
ステップ 3