代数 例

Решить неравенство относительно x (3x+10)(2x^2+1)(2-x)>0
ステップ 1
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
に等しいとします。
ステップ 2.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 2.2.1
方程式の両辺からを引きます。
ステップ 2.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
の各項をで割ります。
ステップ 2.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.2.1.1
共通因数を約分します。
ステップ 2.2.2.2.1.2
で割ります。
ステップ 2.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.3.1
分数の前に負数を移動させます。
ステップ 3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 3.1
に等しいとします。
ステップ 3.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 3.2.1
方程式の両辺からを引きます。
ステップ 3.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
の各項をで割ります。
ステップ 3.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.2.2.1.1
共通因数を約分します。
ステップ 3.2.2.2.1.2
で割ります。
ステップ 3.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.3.1
分数の前に負数を移動させます。
ステップ 3.2.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.2.4
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.4.1
に書き換えます。
タップして手順をさらに表示してください…
ステップ 3.2.4.1.1
に書き換えます。
ステップ 3.2.4.1.2
に書き換えます。
ステップ 3.2.4.2
累乗根の下から項を取り出します。
ステップ 3.2.4.3
1のすべての数の累乗は1です。
ステップ 3.2.4.4
に書き換えます。
ステップ 3.2.4.5
のいずれの根はです。
ステップ 3.2.4.6
をかけます。
ステップ 3.2.4.7
分母を組み合わせて簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.4.7.1
をかけます。
ステップ 3.2.4.7.2
乗します。
ステップ 3.2.4.7.3
乗します。
ステップ 3.2.4.7.4
べき乗則を利用して指数を組み合わせます。
ステップ 3.2.4.7.5
をたし算します。
ステップ 3.2.4.7.6
に書き換えます。
タップして手順をさらに表示してください…
ステップ 3.2.4.7.6.1
を利用し、に書き換えます。
ステップ 3.2.4.7.6.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.2.4.7.6.3
をまとめます。
ステップ 3.2.4.7.6.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.4.7.6.4.1
共通因数を約分します。
ステップ 3.2.4.7.6.4.2
式を書き換えます。
ステップ 3.2.4.7.6.5
指数を求めます。
ステップ 3.2.4.8
をまとめます。
ステップ 3.2.5
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 3.2.5.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.2.5.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.2.5.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 4.1
に等しいとします。
ステップ 4.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 4.2.1
方程式の両辺からを引きます。
ステップ 4.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1
の各項をで割ります。
ステップ 4.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.2.1
2つの負の値を割ると正の値になります。
ステップ 4.2.2.2.2
で割ります。
ステップ 4.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.3.1
で割ります。
ステップ 5
最終解はを真にするすべての値です。
ステップ 6
各根を利用して検定区間を作成します。
ステップ 7
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 7.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 7.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 7.1.2
を元の不等式ので置き換えます。
ステップ 7.1.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
ステップ 7.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 7.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 7.2.2
を元の不等式ので置き換えます。
ステップ 7.2.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
ステップ 7.3
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 7.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 7.3.2
を元の不等式ので置き換えます。
ステップ 7.3.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
ステップ 7.4
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 8
解はすべての真の区間からなります。
ステップ 9
結果は複数の形で表すことができます。
不等式形:
区間記号:
ステップ 10