問題を入力...
代数 例
ステップ 1
ステップ 1.1
完全平方式を利用して因数分解します。
ステップ 1.1.1
をに書き換えます。
ステップ 1.1.2
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 1.1.3
多項式を書き換えます。
ステップ 1.1.4
とならば、完全平方3項式を利用して因数分解します。
ステップ 1.2
たすき掛けを利用してを因数分解します。
ステップ 1.2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.2.2
この整数を利用して因数分解の形を書きます。
ステップ 1.3
たすき掛けを利用してを因数分解します。
ステップ 1.3.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.3.2
この整数を利用して因数分解の形を書きます。
ステップ 1.4
項を簡約します。
ステップ 1.4.1
まとめる。
ステップ 1.4.2
との共通因数を約分します。
ステップ 1.4.2.1
をで因数分解します。
ステップ 1.4.2.2
共通因数を約分します。
ステップ 1.4.2.2.1
をで因数分解します。
ステップ 1.4.2.2.2
共通因数を約分します。
ステップ 1.4.2.2.3
式を書き換えます。
ステップ 1.4.3
の共通因数を約分します。
ステップ 1.4.3.1
共通因数を約分します。
ステップ 1.4.3.2
式を書き換えます。
ステップ 2
ステップ 2.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.2
1と任意の式の最小公倍数はその式です。
ステップ 3
ステップ 3.1
の各項にを掛けます。
ステップ 3.2
左辺を簡約します。
ステップ 3.2.1
の共通因数を約分します。
ステップ 3.2.1.1
共通因数を約分します。
ステップ 3.2.1.2
式を書き換えます。
ステップ 3.2.2
分配法則(FOIL法)を使ってを展開します。
ステップ 3.2.2.1
分配則を当てはめます。
ステップ 3.2.2.2
分配則を当てはめます。
ステップ 3.2.2.3
分配則を当てはめます。
ステップ 3.2.3
簡約し、同類項をまとめます。
ステップ 3.2.3.1
各項を簡約します。
ステップ 3.2.3.1.1
にをかけます。
ステップ 3.2.3.1.2
をの左に移動させます。
ステップ 3.2.3.1.3
にをかけます。
ステップ 3.2.3.2
とをたし算します。
ステップ 3.3
右辺を簡約します。
ステップ 3.3.1
にをかけます。
ステップ 4
方程式をとして書き換えます。