問題を入力...
代数 例
ステップ 1
ステップ 1.1
たすき掛けを利用してを因数分解します。
ステップ 1.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.1.2
この整数を利用して因数分解の形を書きます。
ステップ 1.2
をで因数分解します。
ステップ 1.2.1
をで因数分解します。
ステップ 1.2.2
をで因数分解します。
ステップ 1.2.3
をで因数分解します。
ステップ 1.3
今日数因数で約分することで式を約分します。
ステップ 1.3.1
共通因数を約分します。
ステップ 1.3.2
式を書き換えます。
ステップ 1.4
をで因数分解します。
ステップ 1.4.1
をで因数分解します。
ステップ 1.4.2
をで因数分解します。
ステップ 1.4.3
をで因数分解します。
ステップ 1.5
分数を割るために、その逆数を掛けます。
ステップ 1.6
の共通因数を約分します。
ステップ 1.6.1
をで因数分解します。
ステップ 1.6.2
共通因数を約分します。
ステップ 1.6.3
式を書き換えます。
ステップ 1.7
にをかけます。
ステップ 1.8
にをかけます。
ステップ 1.9
を乗します。
ステップ 1.10
べき乗則を利用して指数を組み合わせます。
ステップ 1.11
とをたし算します。
ステップ 2
ステップ 2.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.2
1と任意の式の最小公倍数はその式です。
ステップ 3
ステップ 3.1
の各項にを掛けます。
ステップ 3.2
左辺を簡約します。
ステップ 3.2.1
積の可換性を利用して書き換えます。
ステップ 3.2.2
の共通因数を約分します。
ステップ 3.2.2.1
をで因数分解します。
ステップ 3.2.2.2
共通因数を約分します。
ステップ 3.2.2.3
式を書き換えます。
ステップ 3.2.3
の共通因数を約分します。
ステップ 3.2.3.1
共通因数を約分します。
ステップ 3.2.3.2
式を書き換えます。
ステップ 3.3
右辺を簡約します。
ステップ 3.3.1
にをかけます。