代数 例

最小公倍数を求める z^2-36 , 6z+36
,
ステップ 1
を因数分解します。
タップして手順をさらに表示してください…
ステップ 1.1
に書き換えます。
ステップ 1.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 2
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.1
で因数分解します。
ステップ 2.2
で因数分解します。
ステップ 2.3
で因数分解します。
ステップ 3
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 4
は、それ自身である正の因数を1つだけもつので、素数ではありません。
素数ではありません
ステップ 5
にはの因数があります。
ステップ 6
をかけます。
ステップ 7
の因数はそのものです。
回発生します。
ステップ 8
の因数はそのものです。
回発生します。
ステップ 9
の因数はそのものです。
回発生します。
ステップ 10
の最小公倍数は、すべての因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 11
ある数の最小公倍数はその数が因数分解された最小の数です。