ไปฃๆ•ฐ ไพ‹

未定義または不連続の場所を求める ( 2x^2)/(の平方根5x)の平方根
ใ‚นใƒ†ใƒƒใƒ— 1
ใฎๅˆ†ๆฏใ‚’ใซ็ญ‰ใ—ใ„ใจใ—ใฆใ€ๅผใŒๆœชๅฎš็พฉใงใ‚ใ‚‹ๅ ดๆ‰€ใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2
ใซใคใ„ใฆ่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1
ๆ–น็จ‹ๅผใฎๅทฆ่พบใ‹ใ‚‰ๆ นใ‚’ๅ‰Š้™คใ™ใ‚‹ใŸใ‚ใ€ๆ–น็จ‹ๅผใฎไธก่พบใ‚’2ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2
ๆ–น็จ‹ๅผใฎๅ„่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.1
ใ‚’ๅˆฉ็”จใ—ใ€ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1
ใฎๆŒ‡ๆ•ฐใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.1
ในใไน—ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใฆใ€ๆŒ‡ๆ•ฐใ‚’ใ‹ใ‘็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.2
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.2.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.2.2
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.2
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.3.1
ใ‚’ๆญฃๆ•ฐไน—ใ—ใ€ใ‚’ๅพ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใ€็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.3.1
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3
ใฎ่ขซ้–‹ๆ•ฐใ‚’ใ‚ˆใ‚Šๅฐใ•ใ„ใจใ—ใฆใ€ๅผใŒๆœชๅฎš็พฉใงใ‚ใ‚‹ๅ ดๆ‰€ใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4
ใซใคใ„ใฆ่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใ€็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.1.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.1.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.1.2.1
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.1.2.1.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.1.2.1.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.1.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.1.3.1
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
ใ‚นใƒ†ใƒƒใƒ— 4.3
ๆ–น็จ‹ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.3.1
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.3.1.1
็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.3.2
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.3.2.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.3.2.1.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.3.2.1.2
็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.3.2.1.3
็ตถๅฏพๅ€คใฏๆ•ฐใจ0ใฎ้–“ใฎ่ท้›ขใงใ™ใ€‚ใจใฎ้–“ใฎ่ท้›ขใฏใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.4
ใ‚’ๅŒบๅˆ†ใงๆ›ธใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.4.1
1็•ช็›ฎใฎๅŒบๅˆ†ใฎๅŒบ้–“ใ‚’ๆฑ‚ใ‚ใ‚‹ใŸใ‚ใซใ€็ตถๅฏพๅ€คใฎไธญใŒ่ฒ ใงใชใ„ๅ ดๆ‰€ใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.4.2
ใŒ่ฒ ใงใชใ„ๅŒบๅˆ†ใงใฏใ€็ตถๅฏพๅ€คใ‚’ๅ‰Š้™คใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.4.3
ใŒ่ฒ ใงใ‚ใ‚‹ๅŒบๅˆ†ใงใฏใ€็ตถๅฏพๅ€คใ‚’ๅ–ใ‚Š้™คใใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.4.4
ๅŒบๅˆ†ใงๆ›ธใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.5
ใจใฎไบค็‚นใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
่งฃใŒใ‚ใ‚Šใพใ›ใ‚“
ใ‚นใƒ†ใƒƒใƒ— 4.6
ใฎใจใใ€ใ‚’่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.6.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใ€็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.6.1.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚ไธ็ญ‰ๅผใฎไธก่พบใ‚’่ฒ ใฎๅ€คใงใ‹ใ‘็ฎ—ใพใŸใฏใ‚ใ‚Š็ฎ—ใ™ใ‚‹ใจใใ€ไธ็ญ‰ๅทใฎๅ‘ใใ‚’้€†ใซใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.6.1.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.6.1.2.1
2ใคใฎ่ฒ ใฎๅ€คใ‚’ๅ‰ฒใ‚‹ใจๆญฃใฎๅ€คใซใชใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.6.1.2.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.6.1.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 4.6.1.3.1
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4.6.2
ใจใฎไบค็‚นใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
่งฃใŒใ‚ใ‚Šใพใ›ใ‚“
่งฃใŒใ‚ใ‚Šใพใ›ใ‚“
ใ‚นใƒ†ใƒƒใƒ— 4.7
่งฃใฎๅ’Œ้›†ๅˆใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
่งฃใŒใ‚ใ‚Šใพใ›ใ‚“
่งฃใŒใ‚ใ‚Šใพใ›ใ‚“
ใ‚นใƒ†ใƒƒใƒ— 5
ใฎ่ขซ้–‹ๆ•ฐใ‚’ใ‚ˆใ‚Šๅฐใ•ใ„ใจใ—ใฆใ€ๅผใŒๆœชๅฎš็พฉใงใ‚ใ‚‹ๅ ดๆ‰€ใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใ€็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.1
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.3.1
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7
ๅˆ†ๆฏใŒใซ็ญ‰ใ—ใ„ใ€ๅนณๆ–นๆ นใฎๅผ•ๆ•ฐใŒใ‚ˆใ‚Šๅฐใ•ใ„ใ€ใพใŸใฏๅฏพๆ•ฐใฎๅผ•ๆ•ฐใŒไปฅไธ‹ใฎๅ ดๅˆใ€ๆ–น็จ‹ๅผใฏๆœชๅฎš็พฉใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 8