代数 例

奇関数、偶関数、どちらでもないかを判断する 1/3x^3-4x
ステップ 1
を関数で書きます。
ステップ 2
をまとめます。
ステップ 3
を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
内のの出現回数をすべてに代入してを求めます。
ステップ 3.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
積の法則をに当てはめます。
ステップ 3.2.1.2
乗します。
ステップ 3.2.2
分数の前に負数を移動させます。
ステップ 3.2.3
をかけます。
ステップ 4
ならば関数は偶関数です。
タップして手順をさらに表示してください…
ステップ 4.1
ならば確認します。
ステップ 4.2
なので、関数は偶関数ではありません。
関数は偶関数ではありません
関数は偶関数ではありません
ステップ 5
ならば関数は奇関数です。
タップして手順をさらに表示してください…
ステップ 5.1
を求めます。
タップして手順をさらに表示してください…
ステップ 5.1.1
をかけます。
ステップ 5.1.2
分配則を当てはめます。
ステップ 5.1.3
をかけます。
ステップ 5.2
なので、関数は奇関数です。
関数は奇関数です。
関数は奇関数です。
ステップ 6