代数 例

Решить относительно x (6x+5)/(x-4)>(8-2x)/(x-4)
ステップ 1
方程式の各辺にある式に同じ分母があるので、分子は等しくなければなりません。
ステップ 2
を含むすべての項を不等式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 2.1
不等式の両辺にを足します。
ステップ 2.2
をたし算します。
ステップ 3
を含まないすべての項を不等式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 3.1
不等式の両辺からを引きます。
ステップ 3.2
からを引きます。
ステップ 4
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
の各項をで割ります。
ステップ 4.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1
共通因数を約分します。
ステップ 4.2.1.2
で割ります。
ステップ 5
の定義域を求めます。
タップして手順をさらに表示してください…
ステップ 5.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 5.2
方程式の両辺にを足します。
ステップ 5.3
定義域は式が定義になるのすべての値です。
ステップ 6
各根を利用して検定区間を作成します。
ステップ 7
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 7.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 7.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 7.1.2
を元の不等式ので置き換えます。
ステップ 7.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 7.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 7.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 7.2.2
を元の不等式ので置き換えます。
ステップ 7.2.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
False
False
ステップ 7.3
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 7.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 7.3.2
を元の不等式ので置き換えます。
ステップ 7.3.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 7.4
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 8
解はすべての真の区間からなります。
または
ステップ 9
結果は複数の形で表すことができます。
不等式形:
区間記号:
ステップ 10