ไปฃๆ•ฐ ไพ‹

代入による解法 2x^2-3y^2=-19 , 3x^2+2y^2=30
,
ใ‚นใƒ†ใƒƒใƒ— 1
ใฎใซใคใ„ใฆ่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.1
ๆ–น็จ‹ๅผใฎไธก่พบใซใ‚’่ถณใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใ€็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.2.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.2.2.1
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.2.2.1.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.2.1.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.2.3.1
ๅˆ†ๆ•ฐใฎๅ‰ใซ่ฒ ๆ•ฐใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ใ‚นใƒ†ใƒƒใƒ— 1.4
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.1
ๅ…ฌๅˆ†ๆฏใฎๅˆ†ๅญใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.2
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4
ๅˆ†ๆฏใ‚’็ต„ใฟๅˆใ‚ใ›ใฆ็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.2
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.3
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.4
ในใไน—ๅ‰‡ใ‚’ๅˆฉ็”จใ—ใฆๆŒ‡ๆ•ฐใ‚’็ต„ใฟๅˆใ‚ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.5
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.6
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.6.1
ใ‚’ๅˆฉ็”จใ—ใ€ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.6.2
ในใไน—ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใฆใ€ๆŒ‡ๆ•ฐใ‚’ใ‹ใ‘็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.6.3
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.6.4
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.6.4.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.6.4.2
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.4.6.5
ๆŒ‡ๆ•ฐใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.5
ๆ นใฎ็ฉใฎๆณ•ๅ‰‡ใ‚’ไฝฟใฃใฆใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.4.6
ใฎๅ› ๆ•ฐใ‚’ไธฆในๆ›ฟใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5
ๅฎŒๅ…จ่งฃใฏใ€่งฃใฎๆญฃใจ่ฒ ใฎ้ƒจๅˆ†ใฎไธกๆ–นใฎ่จˆ็ฎ—็ตๆžœใงใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.5.1
ใพใšใ€ใฎๆญฃใฎๆ•ฐใ‚’ๅˆฉ็”จใ—ใ€1็•ช็›ฎใฎ่งฃใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.2
ๆฌกใซใ€ใฎ่ฒ ใฎๅ€คใ‚’ๅˆฉ็”จใ—ใ€‚2็•ช็›ฎใฎ่งฃใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.5.3
ๅฎŒๅ…จ่งฃใฏใ€่งฃใฎๆญฃใจ่ฒ ใฎ้ƒจๅˆ†ใฎไธกๆ–นใฎ่จˆ็ฎ—็ตๆžœใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2
ๅผใ‚’่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1
ๅ„ๆ–น็จ‹ๅผใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.1
ใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.1
็ฉใฎๆณ•ๅ‰‡ใ‚’ใซๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.1.1
ใ‚’ๅˆฉ็”จใ—ใ€ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.1.2
ในใไน—ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใฆใ€ๆŒ‡ๆ•ฐใ‚’ใ‹ใ‘็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.1.3
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.1.4
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.1.4.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.1.4.2
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.1.5
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.2
ๅˆ†้…ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.5
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.5.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.5.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.2.5.3
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.3
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.4
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.4.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.4.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.4.3
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.1.5
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.2
ใ‚’ๅ…ฌๅˆ†ๆฏใฎใ‚ใ‚‹ๅˆ†ๆ•ฐใจใ—ใฆๆ›ธใใŸใ‚ใซใ€ใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.3
้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.3.1
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.3.2
ๅ…ฌๅˆ†ๆฏใฎๅˆ†ๅญใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.4
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.4.1
ๅˆ†้…ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.4.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.4.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.4.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.4.5
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.5
ใใใ‚Šใ ใ—ใฆ็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.5.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.5.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.5.3
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.2.1.5.4
ๅˆ†ๆ•ฐใฎๅ‰ใซ่ฒ ๆ•ฐใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2
ใฎใซใคใ„ใฆ่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.1
ๆ–น็จ‹ๅผใฎไธก่พบใซใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2
ๆ–น็จ‹ๅผใฎไธก่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.1
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.1.1
ใฎๅ…ˆ้ ญใฎ่ฒ ใ‚’ๅˆ†ๅญใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.1.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.1.3
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.1.4
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.2
ๆŽ›ใ‘็ฎ—ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.2.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.1.1.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.2
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.2.2.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.3
ใ‚’ๅซใพใชใ„ใ™ในใฆใฎ้ …ใ‚’ๆ–น็จ‹ๅผใฎๅณ่พบใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.3.1
ๆ–น็จ‹ๅผใฎไธก่พบใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.3.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.4
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใ€็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.4.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.4.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.4.2.1
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.4.2.1.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.4.2.1.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.4.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.4.3.1
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ใ‚นใƒ†ใƒƒใƒ— 2.2.6
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.6.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.6.2
ๆญฃใฎๅฎŸๆ•ฐใจไปฎๅฎšใ—ใฆใ€็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.7
ๅฎŒๅ…จ่งฃใฏใ€่งฃใฎๆญฃใจ่ฒ ใฎ้ƒจๅˆ†ใฎไธกๆ–นใฎ่จˆ็ฎ—็ตๆžœใงใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.2.7.1
ใพใšใ€ใฎๆญฃใฎๆ•ฐใ‚’ๅˆฉ็”จใ—ใ€1็•ช็›ฎใฎ่งฃใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.7.2
ๆฌกใซใ€ใฎ่ฒ ใฎๅ€คใ‚’ๅˆฉ็”จใ—ใ€‚2็•ช็›ฎใฎ่งฃใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2.7.3
ๅฎŒๅ…จ่งฃใฏใ€่งฃใฎๆญฃใจ่ฒ ใฎ้ƒจๅˆ†ใฎไธกๆ–นใฎ่จˆ็ฎ—็ตๆžœใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3
ๅ„ๆ–น็จ‹ๅผใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.1
ใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.1
ๆŒ‡ๆ•ฐใ‚’่ถณใ—ใฆใซใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.1.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.1.1.1
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.1.1.2
ในใไน—ๅ‰‡ใ‚’ๅˆฉ็”จใ—ใฆๆŒ‡ๆ•ฐใ‚’็ต„ใฟๅˆใ‚ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.1.2
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.2
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.5
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.1.6
ๆญฃใฎๅฎŸๆ•ฐใจไปฎๅฎšใ—ใฆใ€็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.3.2.1.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4
ๅ„ๆ–น็จ‹ๅผใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.1
ใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.2
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1.1
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1.1.1
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1.1.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1.1.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1.1.5
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1.1.6
ๆญฃใฎๅฎŸๆ•ฐใจไปฎๅฎšใ—ใฆใ€็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3
ๅผใ‚’่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1
ๅ„ๆ–น็จ‹ๅผใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.1
ใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.1
ในใไน—ๅ‰‡ใ‚’ๅˆฉ็”จใ—ใฆๆŒ‡ๆ•ฐใ‚’ๅˆ†้…ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.1.1
็ฉใฎๆณ•ๅ‰‡ใ‚’ใซๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.1.2
็ฉใฎๆณ•ๅ‰‡ใ‚’ใซๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.2
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.1.1
ใ‚’ๅˆฉ็”จใ—ใ€ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.1.2
ในใไน—ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใฆใ€ๆŒ‡ๆ•ฐใ‚’ใ‹ใ‘็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.1.3
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.1.4
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.1.4.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.1.4.2
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.1.5
็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.2
ๅˆ†้…ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.5
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.5.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.5.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.4.5.3
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.5
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.6
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.6.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.6.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.6.3
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.1.7
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.2
ใ‚’ๅ…ฌๅˆ†ๆฏใฎใ‚ใ‚‹ๅˆ†ๆ•ฐใจใ—ใฆๆ›ธใใŸใ‚ใซใ€ใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.3
้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.3.1
ใจใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.3.2
ๅ…ฌๅˆ†ๆฏใฎๅˆ†ๅญใ‚’ใพใจใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.4
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.4.1
ๅˆ†้…ๅ‰‡ใ‚’ๅฝ“ใฆใฏใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.4.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.4.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.4.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.4.5
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.5
ใใใ‚Šใ ใ—ใฆ็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.5.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.5.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.5.3
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.1.2.1.5.4
ๅˆ†ๆ•ฐใฎๅ‰ใซ่ฒ ๆ•ฐใ‚’็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2
ใฎใซใคใ„ใฆ่งฃใใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.1
ๆ–น็จ‹ๅผใฎไธก่พบใซใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2
ๆ–น็จ‹ๅผใฎไธก่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1.1
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1.1.1
ใฎๅ…ˆ้ ญใฎ่ฒ ใ‚’ๅˆ†ๅญใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1.1.2
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1.1.3
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1.1.4
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1.2
ๆŽ›ใ‘็ฎ—ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1.2.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.1.1.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.2
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.2.2.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.3
ใ‚’ๅซใพใชใ„ใ™ในใฆใฎ้ …ใ‚’ๆ–น็จ‹ๅผใฎๅณ่พบใซ็งปๅ‹•ใ•ใ›ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.3.1
ๆ–น็จ‹ๅผใฎไธก่พบใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.3.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.4
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใ€็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.4.1
ใฎๅ„้ …ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.4.2
ๅทฆ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.4.2.1
ใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.4.2.1.1
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.4.2.1.2
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.4.3
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.4.3.1
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ใ‚นใƒ†ใƒƒใƒ— 3.2.6
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.6.1
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.6.2
ๆญฃใฎๅฎŸๆ•ฐใจไปฎๅฎšใ—ใฆใ€็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.7
ๅฎŒๅ…จ่งฃใฏใ€่งฃใฎๆญฃใจ่ฒ ใฎ้ƒจๅˆ†ใฎไธกๆ–นใฎ่จˆ็ฎ—็ตๆžœใงใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.7.1
ใพใšใ€ใฎๆญฃใฎๆ•ฐใ‚’ๅˆฉ็”จใ—ใ€1็•ช็›ฎใฎ่งฃใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.7.2
ๆฌกใซใ€ใฎ่ฒ ใฎๅ€คใ‚’ๅˆฉ็”จใ—ใ€‚2็•ช็›ฎใฎ่งฃใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.2.7.3
ๅฎŒๅ…จ่งฃใฏใ€่งฃใฎๆญฃใจ่ฒ ใฎ้ƒจๅˆ†ใฎไธกๆ–นใฎ่จˆ็ฎ—็ตๆžœใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3
ๅ„ๆ–น็จ‹ๅผใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.3.1
ใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.1
ๆŒ‡ๆ•ฐใ‚’่ถณใ—ใฆใซใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.1.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.1.1.1
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.1.1.2
ในใไน—ๅ‰‡ใ‚’ๅˆฉ็”จใ—ใฆๆŒ‡ๆ•ฐใ‚’็ต„ใฟๅˆใ‚ใ›ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.1.2
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.2
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.5
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.1.6
ๆญฃใฎๅฎŸๆ•ฐใจไปฎๅฎšใ—ใฆใ€็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.2
ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.2.1
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.3.2.1.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4
ๅ„ๆ–น็จ‹ๅผใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.4.1
ใฎใฎใ™ในใฆใฎ็™บ็”Ÿใ‚’ใง็ฝฎใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4.2
ๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.1
ๅˆ†ๅญใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.1.1
ใ‚’ไน—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.1.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.1.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.1.5
ใ‚’ใซๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.1.6
ๆญฃใฎๅฎŸๆ•ฐใจไปฎๅฎšใ—ใฆใ€็ดฏไน—ๆ นใฎไธ‹ใ‹ใ‚‰้ …ใ‚’ๅ–ใ‚Šๅ‡บใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.2
ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.2.1
ใ‚’ใงๅ‰ฒใ‚Šใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4.2.1.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4
ๅผใฎ่งฃใฏใ€ๆœ‰ๅŠนใช่งฃใงใ‚ใ‚‹้ †ๅบๅฏพใฎๅฎŒๅ…จ้›†ๅˆใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5
็ตๆžœใฏ่ค‡ๆ•ฐใฎๅฝขใง่กจใ™ใ“ใจใŒใงใใพใ™ใ€‚
็‚นใฎๅฝข๏ผš
ๆ–น็จ‹ๅผใฎๅฝข๏ผš
ใ‚นใƒ†ใƒƒใƒ— 6