代数 例

定義域と値域を求める x^2y-4x^2-5x-9y-6=0
ステップ 1
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 1.1
方程式の両辺にを足します。
ステップ 1.2
方程式の両辺にを足します。
ステップ 1.3
方程式の両辺にを足します。
ステップ 2
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.1
で因数分解します。
ステップ 2.2
で因数分解します。
ステップ 2.3
で因数分解します。
ステップ 3
に書き換えます。
ステップ 4
因数分解。
タップして手順をさらに表示してください…
ステップ 4.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 4.2
不要な括弧を削除します。
ステップ 5
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
の各項をで割ります。
ステップ 5.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
共通因数を約分します。
ステップ 5.2.1.2
式を書き換えます。
ステップ 5.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
共通因数を約分します。
ステップ 5.2.2.2
で割ります。
ステップ 6
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 7
について解きます。
タップして手順をさらに表示してください…
ステップ 7.1
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 7.2
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 7.2.1
に等しいとします。
ステップ 7.2.2
方程式の両辺からを引きます。
ステップ 7.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 7.3.1
に等しいとします。
ステップ 7.3.2
方程式の両辺にを足します。
ステップ 7.4
最終解はを真にするすべての値です。
ステップ 8
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
ステップ 9
値域はすべての有効な値の集合です。グラフを利用して値域を求めます。
区間記号:
集合の内包的記法:
ステップ 10
定義域と値域を判定します。
定義域:
値域:
ステップ 11