代数 例

Решить относительно x x^2-4-の対数の底5 x+4=1の対数の底5
ステップ 1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1
対数の商の性質を使います、です。
ステップ 1.2
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1
に書き換えます。
ステップ 1.2.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 2
対数の定義を利用してを指数表記に書き換えます。が正の実数で、ならば、と同値です。
ステップ 3
分数を削除するためにたすき掛けします。
ステップ 4
を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
分配則を当てはめます。
ステップ 4.2
をかけます。
ステップ 5
を含むすべての項を方程式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 5.1
方程式の両辺からを引きます。
ステップ 5.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
分配則を当てはめます。
ステップ 5.2.1.2
分配則を当てはめます。
ステップ 5.2.1.3
分配則を当てはめます。
ステップ 5.2.2
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
について因数を並べ替えます。
ステップ 5.2.2.2
をたし算します。
ステップ 5.2.2.3
をたし算します。
ステップ 5.2.3
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.3.1
をかけます。
ステップ 5.2.3.2
をかけます。
ステップ 6
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 6.1
方程式の両辺にを足します。
ステップ 6.2
をたし算します。
ステップ 7
方程式の両辺からを引きます。
ステップ 8
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 8.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 8.2
この整数を利用して因数分解の形を書きます。
ステップ 9
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 10
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 10.1
に等しいとします。
ステップ 10.2
方程式の両辺にを足します。
ステップ 11
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 11.1
に等しいとします。
ステップ 11.2
方程式の両辺からを引きます。
ステップ 12
最終解はを真にするすべての値です。