代数 例

グラフ化する f(x)=|-x|^(1/3)
ステップ 1
頂点の絶対値を求めます。このとき、の頂点はです。
タップして手順をさらに表示してください…
ステップ 1.1
交点の座標を求めるために、絶対値の内側をと等しくします。この場合、です。
ステップ 1.2
式の変数で置換えます。
ステップ 1.3
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 1.3.2
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.2.1
に書き換えます。
ステップ 1.3.2.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 1.3.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.3.3.1
共通因数を約分します。
ステップ 1.3.3.2
式を書き換えます。
ステップ 1.3.4
指数を求めます。
ステップ 1.4
絶対値の上界はです。
ステップ 2
の定義域を求めると、値のリストが選択され、点のリストを求めることができます。このことで、絶対値関数をグラフにできます。
タップして手順をさらに表示してください…
ステップ 2.1
分数指数をもつ式を根に変換します。
タップして手順をさらに表示してください…
ステップ 2.1.1
法則を当てはめ、累乗法を根で書き換えます。
ステップ 2.1.2
に乗じたものは底そのものです。
ステップ 2.2
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
区間記号:
集合の内包的記法:
区間記号:
集合の内包的記法:
ステップ 3
値について値が1つあります。定義域から値をいくつか選択します。頂点の絶対値の値周辺にあるように値を選択するとより便利になるでしょう。
タップして手順をさらに表示してください…
ステップ 3.1
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 3.1.1
式の変数で置換えます。
ステップ 3.1.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 3.1.2.2
最終的な答えはです。
ステップ 3.2
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 3.2.1
式の変数で置換えます。
ステップ 3.2.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 3.2.2.2
1のすべての数の累乗は1です。
ステップ 3.2.2.3
最終的な答えはです。
ステップ 3.3
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 3.3.1
式の変数で置換えます。
ステップ 3.3.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.1
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 3.3.2.2
最終的な答えはです。
ステップ 3.4
絶対値は、頂点の周りの点を利用してグラフにすることができます
ステップ 4