代数 例

簡略化 ((x^3+2^3)/(x^2-2x))/(((x+2)^3)/(x^2+4x+4))
ステップ 1
分子に分母の逆数を掛けます。
ステップ 2
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
両項とも完全立方なので、立方の和の公式を利用して、因数分解します。このとき、であり、です。
ステップ 2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
をかけます。
ステップ 2.2.2
乗します。
ステップ 3
項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 3.1.1
で因数分解します。
ステップ 3.1.2
で因数分解します。
ステップ 3.1.3
で因数分解します。
ステップ 3.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1
で因数分解します。
ステップ 3.2.2
共通因数を約分します。
ステップ 3.2.3
式を書き換えます。
ステップ 3.3
をかけます。
ステップ 4
完全平方式を利用して因数分解します。
タップして手順をさらに表示してください…
ステップ 4.1
に書き換えます。
ステップ 4.2
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 4.3
多項式を書き換えます。
ステップ 4.4
ならば、完全平方3項式を利用して因数分解します。
ステップ 5
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.1
共通因数を約分します。
ステップ 5.2
式を書き換えます。