代数 例

Решить неравенство относительно w 4w^2>4w-1
ステップ 1
不等式の両辺からを引きます。
ステップ 2
不等式を方程式に変換します。
ステップ 3
方程式の両辺にを足します。
ステップ 4
完全平方式を利用して因数分解します。
タップして手順をさらに表示してください…
ステップ 4.1
に書き換えます。
ステップ 4.2
に書き換えます。
ステップ 4.3
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 4.4
多項式を書き換えます。
ステップ 4.5
ならば、完全平方3項式を利用して因数分解します。
ステップ 5
に等しいとします。
ステップ 6
について解きます。
タップして手順をさらに表示してください…
ステップ 6.1
方程式の両辺にを足します。
ステップ 6.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
の各項をで割ります。
ステップ 6.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.2.2.1.1
共通因数を約分します。
ステップ 6.2.2.1.2
で割ります。
ステップ 7
各根を利用して検定区間を作成します。
ステップ 8
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 8.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 8.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 8.1.2
を元の不等式ので置き換えます。
ステップ 8.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
ステップ 8.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 8.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 8.2.2
を元の不等式ので置き換えます。
ステップ 8.2.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
ステップ 8.3
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 9
解はすべての真の区間からなります。
または
ステップ 10
結果は複数の形で表すことができます。
不等式形:
区間記号:
ステップ 11