Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Passaggio 2.1
Scomponi usando il metodo AC.
Passaggio 2.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 2.1.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 2.2
Semplifica il denominatore.
Passaggio 2.2.1
Riscrivi come .
Passaggio 2.2.2
Poiché entrambi i termini sono dei quadrati perfetti, fattorizza utilizzando la formula della differenza di quadrati, dove e .
Passaggio 2.3
Scomponi usando il metodo AC.
Passaggio 2.3.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 2.3.2
Scrivi la forma fattorizzata utilizzando questi interi.
Passaggio 3
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4
Passaggio 4.1
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 4.2
Imposta uguale a e risolvi per .
Passaggio 4.2.1
Imposta uguale a .
Passaggio 4.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 4.3
Imposta uguale a e risolvi per .
Passaggio 4.3.1
Imposta uguale a .
Passaggio 4.3.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 4.4
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 5
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 6
Passaggio 6.1
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 6.2
Imposta uguale a e risolvi per .
Passaggio 6.2.1
Imposta uguale a .
Passaggio 6.2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 6.3
Imposta uguale a e risolvi per .
Passaggio 6.3.1
Imposta uguale a .
Passaggio 6.3.2
Somma a entrambi i lati dell'equazione.
Passaggio 6.4
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 7
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 8
Passaggio 8.1
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 8.2
Imposta uguale a e risolvi per .
Passaggio 8.2.1
Imposta uguale a .
Passaggio 8.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 8.3
Imposta uguale a e risolvi per .
Passaggio 8.3.1
Imposta uguale a .
Passaggio 8.3.2
Somma a entrambi i lati dell'equazione.
Passaggio 8.4
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 9
L'equazione è indefinita dove il denominatore è uguale a , l'argomento di una radice quadrata è minore di o l'argomento di un logaritmo è minore di o uguale a .
Passaggio 10