Inserisci un problema...
Trigonometria Esempi
Passaggio 1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al quadrato entrambi i lati dell'equazione.
Passaggio 2
Passaggio 2.1
Usa per riscrivere come .
Passaggio 2.2
Semplifica il lato sinistro.
Passaggio 2.2.1
Semplifica .
Passaggio 2.2.1.1
Applica la regola del prodotto a .
Passaggio 2.2.1.2
Eleva alla potenza di .
Passaggio 2.2.1.3
Moltiplica gli esponenti in .
Passaggio 2.2.1.3.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.2.1.3.2
Elimina il fattore comune di .
Passaggio 2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 2.2.1.4
Semplifica.
Passaggio 2.2.1.5
Applica la proprietà distributiva.
Passaggio 2.2.1.6
Moltiplica.
Passaggio 2.2.1.6.1
Moltiplica per .
Passaggio 2.2.1.6.2
Moltiplica per .
Passaggio 2.3
Semplifica il lato destro.
Passaggio 2.3.1
Eleva alla potenza di .
Passaggio 3
Passaggio 3.1
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Passaggio 3.1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.1.2
Sottrai da .
Passaggio 3.2
Dividi per ciascun termine in e semplifica.
Passaggio 3.2.1
Dividi per ciascun termine in .
Passaggio 3.2.2
Semplifica il lato sinistro.
Passaggio 3.2.2.1
Elimina il fattore comune di .
Passaggio 3.2.2.1.1
Elimina il fattore comune.
Passaggio 3.2.2.1.2
Dividi per .
Passaggio 3.2.3
Semplifica il lato destro.
Passaggio 3.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 3.3
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 3.4
Semplifica il lato destro.
Passaggio 3.4.1
Calcola .
Passaggio 3.5
La funzione del seno è positiva nel terzo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai la soluzione da per trovare un angolo di riferimento. Poi, somma l'angolo di riferimento a per trovare la soluzione nel terzo quadrante.
Passaggio 3.6
Semplifica l'espressione per trovare la seconda soluzione.
Passaggio 3.6.1
Sottrai da .
Passaggio 3.6.2
L'angolo risultante di è positivo, minore di e coterminale con .
Passaggio 3.7
Trova il periodo di .
Passaggio 3.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 3.7.2
Sostituisci con nella formula per il periodo.
Passaggio 3.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 3.7.4
Dividi per .
Passaggio 3.8
Somma a ogni angolo negativo per ottenere gli angoli positivi.
Passaggio 3.8.1
Somma a per trovare l'angolo positivo.
Passaggio 3.8.2
Sottrai da .
Passaggio 3.8.3
Fai un elenco dei nuovi angoli.
Passaggio 3.9
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 4
Escludi le soluzioni che non rendono vera.
Nessuna soluzione