Calcolo Esempi

Valutare il Limite limite per x tendente a infinity di (10-6x^2)/(5+3e^x)
Passaggio 1
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Riordina e .
Passaggio 1.1.2.2
Il limite che tende a infinito di un polinomio il cui coefficiente direttivo è negativo è meno infinito.
Passaggio 1.1.3
Calcola il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1.3.1
Calcola il limite.
Tocca per altri passaggi...
Passaggio 1.1.3.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.1.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.2
Poiché la funzione tende a , anche la costante positiva moltiplicata per la funzione tende a .
Tocca per altri passaggi...
Passaggio 1.1.3.2.1
Considera il limite con il multiplo costante rimosso.
Passaggio 1.1.3.2.2
Poiché l'esponente tende a , la quantità tende a .
Passaggio 1.1.3.3
Infinito più o meno un numero è uguale a infinito.
Passaggio 1.1.3.4
Infinito diviso per infinito è indefinito.
Indefinito
Passaggio 1.1.4
Infinito diviso per infinito è indefinito.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.4.3
Moltiplica per .
Passaggio 1.3.5
Sottrai da .
Passaggio 1.3.6
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.7
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.8
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.8.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.8.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.3.9
Somma e .
Passaggio 1.4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 1.4.1
Scomponi da .
Passaggio 1.4.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 1.4.2.1
Scomponi da .
Passaggio 1.4.2.2
Elimina il fattore comune.
Passaggio 1.4.2.3
Riscrivi l'espressione.
Passaggio 2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 3
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 3.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 3.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 3.1.2
Il limite all'infinito di un polinomio il cui coefficiente direttivo è più infinito.
Passaggio 3.1.3
Poiché l'esponente tende a , la quantità tende a .
Passaggio 3.1.4
Infinito diviso per infinito è indefinito.
Indefinito
Passaggio 3.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.3.1
Differenzia numeratore e denominatore.
Passaggio 3.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.3.3
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4
Poiché il suo numeratore tende a un numero reale, mentre il denominatore è illimitato, la frazione tende a .
Passaggio 5
Moltiplica per .