Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
e .
Passaggio 1.2.4
e .
Passaggio 1.3
Calcola .
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.3.4
e .
Passaggio 1.3.5
Moltiplica per .
Passaggio 1.3.6
e .
Passaggio 1.3.7
Elimina il fattore comune di e .
Passaggio 1.3.7.1
Scomponi da .
Passaggio 1.3.7.2
Elimina i fattori comuni.
Passaggio 1.3.7.2.1
Scomponi da .
Passaggio 1.3.7.2.2
Elimina il fattore comune.
Passaggio 1.3.7.2.3
Riscrivi l'espressione.
Passaggio 1.3.8
Sposta il negativo davanti alla frazione.
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
e .
Passaggio 2.2.4
Moltiplica per .
Passaggio 2.2.5
e .
Passaggio 2.2.6
Elimina il fattore comune di e .
Passaggio 2.2.6.1
Scomponi da .
Passaggio 2.2.6.2
Elimina i fattori comuni.
Passaggio 2.2.6.2.1
Scomponi da .
Passaggio 2.2.6.2.2
Elimina il fattore comune.
Passaggio 2.2.6.2.3
Riscrivi l'espressione.
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.3.4
e .
Passaggio 2.3.5
Moltiplica per .
Passaggio 2.3.6
e .
Passaggio 2.3.7
Sposta il negativo davanti alla frazione.
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.3
e .
Passaggio 4.1.2.4
e .
Passaggio 4.1.3
Calcola .
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.3
Moltiplica per .
Passaggio 4.1.3.4
e .
Passaggio 4.1.3.5
Moltiplica per .
Passaggio 4.1.3.6
e .
Passaggio 4.1.3.7
Elimina il fattore comune di e .
Passaggio 4.1.3.7.1
Scomponi da .
Passaggio 4.1.3.7.2
Elimina i fattori comuni.
Passaggio 4.1.3.7.2.1
Scomponi da .
Passaggio 4.1.3.7.2.2
Elimina il fattore comune.
Passaggio 4.1.3.7.2.3
Riscrivi l'espressione.
Passaggio 4.1.3.8
Sposta il negativo davanti alla frazione.
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Moltiplica per ciascun termine in per eliminare le frazioni.
Passaggio 5.2.1
Moltiplica ogni termine in per .
Passaggio 5.2.2
Semplifica il lato sinistro.
Passaggio 5.2.2.1
Semplifica ciascun termine.
Passaggio 5.2.2.1.1
Elimina il fattore comune di .
Passaggio 5.2.2.1.1.1
Elimina il fattore comune.
Passaggio 5.2.2.1.1.2
Riscrivi l'espressione.
Passaggio 5.2.2.1.2
Elimina il fattore comune di .
Passaggio 5.2.2.1.2.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 5.2.2.1.2.2
Scomponi da .
Passaggio 5.2.2.1.2.3
Elimina il fattore comune.
Passaggio 5.2.2.1.2.4
Riscrivi l'espressione.
Passaggio 5.2.2.1.3
Moltiplica per .
Passaggio 5.2.3
Semplifica il lato destro.
Passaggio 5.2.3.1
Moltiplica per .
Passaggio 5.3
Scomponi da .
Passaggio 5.3.1
Scomponi da .
Passaggio 5.3.2
Scomponi da .
Passaggio 5.3.3
Scomponi da .
Passaggio 5.4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.5
Imposta uguale a e risolvi per .
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Risolvi per .
Passaggio 5.5.2.1
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 5.5.2.2
Semplifica .
Passaggio 5.5.2.2.1
Riscrivi come .
Passaggio 5.5.2.2.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 5.5.2.2.3
Più o meno è .
Passaggio 5.6
Imposta uguale a e risolvi per .
Passaggio 5.6.1
Imposta uguale a .
Passaggio 5.6.2
Somma a entrambi i lati dell'equazione.
Passaggio 5.7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Riduci i numeratori su un comune denominatore.
Passaggio 9.2
Semplifica ciascun termine.
Passaggio 9.2.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.2.2
Moltiplica per .
Passaggio 9.2.3
Moltiplica per .
Passaggio 9.3
Semplifica l'espressione.
Passaggio 9.3.1
Somma e .
Passaggio 9.3.2
Dividi per .
Passaggio 10
Passaggio 10.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 10.2
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.2.2
Semplifica il risultato.
Passaggio 10.2.2.1
Semplifica ciascun termine.
Passaggio 10.2.2.1.1
Eleva alla potenza di .
Passaggio 10.2.2.1.2
Moltiplica per .
Passaggio 10.2.2.1.3
Sposta il negativo davanti alla frazione.
Passaggio 10.2.2.1.4
Eleva alla potenza di .
Passaggio 10.2.2.1.5
Moltiplica per .
Passaggio 10.2.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 10.2.2.3
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Passaggio 10.2.2.3.1
Moltiplica per .
Passaggio 10.2.2.3.2
Moltiplica per .
Passaggio 10.2.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 10.2.2.5
Semplifica il numeratore.
Passaggio 10.2.2.5.1
Moltiplica per .
Passaggio 10.2.2.5.2
Sottrai da .
Passaggio 10.2.2.6
Sposta il negativo davanti alla frazione.
Passaggio 10.2.2.7
La risposta finale è .
Passaggio 10.3
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.3.2
Semplifica il risultato.
Passaggio 10.3.2.1
Semplifica ciascun termine.
Passaggio 10.3.2.1.1
Semplifica il numeratore.
Passaggio 10.3.2.1.1.1
Riscrivi come .
Passaggio 10.3.2.1.1.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 10.3.2.1.1.3
Somma e .
Passaggio 10.3.2.1.2
Eleva alla potenza di .
Passaggio 10.3.2.1.3
Semplifica il numeratore.
Passaggio 10.3.2.1.3.1
Riscrivi come .
Passaggio 10.3.2.1.3.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 10.3.2.1.3.3
Somma e .
Passaggio 10.3.2.1.4
Eleva alla potenza di .
Passaggio 10.3.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 10.3.2.3
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Passaggio 10.3.2.3.1
Moltiplica per .
Passaggio 10.3.2.3.2
Moltiplica per .
Passaggio 10.3.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 10.3.2.5
Semplifica il numeratore.
Passaggio 10.3.2.5.1
Moltiplica per .
Passaggio 10.3.2.5.2
Sottrai da .
Passaggio 10.3.2.6
Sposta il negativo davanti alla frazione.
Passaggio 10.3.2.7
La risposta finale è .
Passaggio 10.4
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Passaggio 10.4.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.4.2
Semplifica il risultato.
Passaggio 10.4.2.1
Semplifica ciascun termine.
Passaggio 10.4.2.1.1
Eleva alla potenza di .
Passaggio 10.4.2.1.2
Moltiplica per .
Passaggio 10.4.2.1.3
Dividi per .
Passaggio 10.4.2.1.4
Eleva alla potenza di .
Passaggio 10.4.2.1.5
Moltiplica per .
Passaggio 10.4.2.1.6
Dividi per .
Passaggio 10.4.2.1.7
Moltiplica per .
Passaggio 10.4.2.2
Sottrai da .
Passaggio 10.4.2.3
La risposta finale è .
Passaggio 10.5
Poiché la derivata prima non ha cambiato segno intorno a , non si tratta né di un minimo né di un massimo locale.
Non è un minimo o un massimo locale
Passaggio 10.6
Dato che la derivata prima ha cambiato segno da negativo a positivo intorno a , allora è un minimo locale.
è un minimo locale
è un minimo locale
Passaggio 11