Calcolo Esempi

Trovare i Punti di Flesso y=2x-tan(x)
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.1.2.3
Moltiplica per .
Passaggio 2.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.2
La derivata di rispetto a è .
Passaggio 2.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.2.1
Differenzia.
Tocca per altri passaggi...
Passaggio 2.2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 2.2.2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.2.3
La derivata di rispetto a è .
Passaggio 2.2.2.4
Eleva alla potenza di .
Passaggio 2.2.2.5
Eleva alla potenza di .
Passaggio 2.2.2.6
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.2.2.7
Somma e .
Passaggio 2.2.2.8
Moltiplica per .
Passaggio 2.2.3
Sottrai da .
Passaggio 2.3
La derivata seconda di rispetto a è .
Passaggio 3
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 3.1
Imposta la derivata seconda uguale a .
Passaggio 3.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.3
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.3.1
Imposta uguale a .
Passaggio 3.3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 3.3.2.2
Semplifica .
Tocca per altri passaggi...
Passaggio 3.3.2.2.1
Riscrivi come .
Passaggio 3.3.2.2.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 3.3.2.2.3
Più o meno è .
Passaggio 3.3.2.3
L'intervallo della secante è e . Poiché non rientra nell'intervallo, non esiste soluzione.
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 3.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.4.1
Imposta uguale a .
Passaggio 3.4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.4.2.1
Trova il valore dell'incognita corrispondente all'inverso della tangente nell'equazione assegnata.
Passaggio 3.4.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.4.2.2.1
Il valore esatto di è .
Passaggio 3.4.2.3
La funzione tangente è positiva nel primo e nel terzo quadrante. Per trovare la seconda soluzione, aggiungi l'angolo di riferimento da per determinare la soluzione nel quarto quadrante.
Passaggio 3.4.2.4
Somma e .
Passaggio 3.4.2.5
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 3.4.2.5.1
Si può calcolare il periodo della funzione usando .
Passaggio 3.4.2.5.2
Sostituisci con nella formula per il periodo.
Passaggio 3.4.2.5.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 3.4.2.5.4
Dividi per .
Passaggio 3.4.2.6
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3.5
La soluzione finale è data da tutti i valori che rendono vera.
, per qualsiasi intero
Passaggio 3.6
Consolida le risposte.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 4
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 5
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
La risposta finale è .
Passaggio 6.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 7
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
La risposta finale è .
Passaggio 7.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 8
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso il punto di flesso è .
Passaggio 9