Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Calcola il limite del numeratore.
Passaggio 1.2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.2.2
Sposta il limite nell'esponente.
Passaggio 1.2.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.2.4
Calcola il limite inserendo per tutte le occorrenze di .
Passaggio 1.2.4.1
Calcola il limite di inserendo per .
Passaggio 1.2.4.2
Calcola il limite di inserendo per .
Passaggio 1.2.5
Semplifica la risposta.
Passaggio 1.2.5.1
Semplifica ciascun termine.
Passaggio 1.2.5.1.1
Qualsiasi valore elevato a è .
Passaggio 1.2.5.1.2
Moltiplica per .
Passaggio 1.2.5.2
Somma e .
Passaggio 1.2.5.3
Sottrai da .
Passaggio 1.3
Calcola il limite del denominatore.
Passaggio 1.3.1
Calcola il limite.
Passaggio 1.3.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.3.1.2
Sposta il limite all'interno della funzione trigonometrica, poiché il coseno è continuo.
Passaggio 1.3.1.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.3.2
Calcola il limite di inserendo per .
Passaggio 1.3.3
Semplifica la risposta.
Passaggio 1.3.3.1
Semplifica ciascun termine.
Passaggio 1.3.3.1.1
Il valore esatto di è .
Passaggio 1.3.3.1.2
Moltiplica per .
Passaggio 1.3.3.2
Sottrai da .
Passaggio 1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 3.4
Calcola .
Passaggio 3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.4.3
Moltiplica per .
Passaggio 3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.6
Somma e .
Passaggio 3.7
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.8
La derivata di rispetto a è .
Passaggio 3.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.10
Somma e .
Passaggio 4
Passaggio 4.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 4.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 4.1.2
Calcola il limite del numeratore.
Passaggio 4.1.2.1
Calcola il limite.
Passaggio 4.1.2.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 4.1.2.1.2
Sposta il limite nell'esponente.
Passaggio 4.1.2.1.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 4.1.2.2
Calcola il limite di inserendo per .
Passaggio 4.1.2.3
Semplifica la risposta.
Passaggio 4.1.2.3.1
Semplifica ciascun termine.
Passaggio 4.1.2.3.1.1
Qualsiasi valore elevato a è .
Passaggio 4.1.2.3.1.2
Moltiplica per .
Passaggio 4.1.2.3.2
Sottrai da .
Passaggio 4.1.3
Calcola il limite del denominatore.
Passaggio 4.1.3.1
Calcola il limite.
Passaggio 4.1.3.1.1
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 4.1.3.1.2
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 4.1.3.2
Calcola il limite di inserendo per .
Passaggio 4.1.3.3
Semplifica la risposta.
Passaggio 4.1.3.3.1
Il valore esatto di è .
Passaggio 4.1.3.3.2
Moltiplica per .
Passaggio 4.1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 4.1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 4.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 4.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 4.3
Trova la derivata del numeratore e del denominatore.
Passaggio 4.3.1
Differenzia numeratore e denominatore.
Passaggio 4.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.3.3
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.5
Somma e .
Passaggio 4.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.7
La derivata di rispetto a è .
Passaggio 5
Passaggio 5.1
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 5.2
Sposta il limite nell'esponente.
Passaggio 5.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 5.4
Sposta il limite all'interno della funzione trigonometrica, poiché il coseno è continuo.
Passaggio 6
Passaggio 6.1
Calcola il limite di inserendo per .
Passaggio 6.2
Calcola il limite di inserendo per .
Passaggio 7
Passaggio 7.1
Frazioni separate.
Passaggio 7.2
Converti da a .
Passaggio 7.3
Sposta quello negativo dal denominatore di .
Passaggio 7.4
Riscrivi come .
Passaggio 7.5
Qualsiasi valore elevato a è .
Passaggio 7.6
Moltiplica per .
Passaggio 7.7
Il valore esatto di è .
Passaggio 7.8
Moltiplica per .