Calcolo Esempi

Trovare i Punti Critici f(x)=(x^2-3x-4)/(x-2)
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 1.1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.5
Moltiplica per .
Passaggio 1.1.2.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.7
Somma e .
Passaggio 1.1.2.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.9
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.10
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.11
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.2.11.1
Somma e .
Passaggio 1.1.2.11.2
Moltiplica per .
Passaggio 1.1.3
Semplifica.
Tocca per altri passaggi...
Passaggio 1.1.3.1
Applica la proprietà distributiva.
Passaggio 1.1.3.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.1.3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.3.2.1.1
Espandi usando il metodo FOIL.
Tocca per altri passaggi...
Passaggio 1.1.3.2.1.1.1
Applica la proprietà distributiva.
Passaggio 1.1.3.2.1.1.2
Applica la proprietà distributiva.
Passaggio 1.1.3.2.1.1.3
Applica la proprietà distributiva.
Passaggio 1.1.3.2.1.2
Semplifica e combina i termini simili.
Tocca per altri passaggi...
Passaggio 1.1.3.2.1.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.3.2.1.2.1.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 1.1.3.2.1.2.1.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.1.3.2.1.2.1.2.1
Sposta .
Passaggio 1.1.3.2.1.2.1.2.2
Moltiplica per .
Passaggio 1.1.3.2.1.2.1.3
Sposta alla sinistra di .
Passaggio 1.1.3.2.1.2.1.4
Moltiplica per .
Passaggio 1.1.3.2.1.2.1.5
Moltiplica per .
Passaggio 1.1.3.2.1.2.2
Sottrai da .
Passaggio 1.1.3.2.1.3
Moltiplica per .
Passaggio 1.1.3.2.1.4
Moltiplica per .
Passaggio 1.1.3.2.2
Sottrai da .
Passaggio 1.1.3.2.3
Somma e .
Passaggio 1.1.3.2.4
Somma e .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 2.3.1
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 2.3.2
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.3.3
Semplifica.
Tocca per altri passaggi...
Passaggio 2.3.3.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.3.3.1.1
Eleva alla potenza di .
Passaggio 2.3.3.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.3.3.1.2.1
Moltiplica per .
Passaggio 2.3.3.1.2.2
Moltiplica per .
Passaggio 2.3.3.1.3
Sottrai da .
Passaggio 2.3.3.1.4
Riscrivi come .
Passaggio 2.3.3.1.5
Riscrivi come .
Passaggio 2.3.3.1.6
Riscrivi come .
Passaggio 2.3.3.1.7
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.3.3.1.7.1
Scomponi da .
Passaggio 2.3.3.1.7.2
Riscrivi come .
Passaggio 2.3.3.1.8
Estrai i termini dal radicale.
Passaggio 2.3.3.1.9
Sposta alla sinistra di .
Passaggio 2.3.3.2
Moltiplica per .
Passaggio 2.3.3.3
Semplifica .
Passaggio 2.3.4
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.3.4.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.3.4.1.1
Eleva alla potenza di .
Passaggio 2.3.4.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.3.4.1.2.1
Moltiplica per .
Passaggio 2.3.4.1.2.2
Moltiplica per .
Passaggio 2.3.4.1.3
Sottrai da .
Passaggio 2.3.4.1.4
Riscrivi come .
Passaggio 2.3.4.1.5
Riscrivi come .
Passaggio 2.3.4.1.6
Riscrivi come .
Passaggio 2.3.4.1.7
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.3.4.1.7.1
Scomponi da .
Passaggio 2.3.4.1.7.2
Riscrivi come .
Passaggio 2.3.4.1.8
Estrai i termini dal radicale.
Passaggio 2.3.4.1.9
Sposta alla sinistra di .
Passaggio 2.3.4.2
Moltiplica per .
Passaggio 2.3.4.3
Semplifica .
Passaggio 2.3.4.4
Cambia da a .
Passaggio 2.3.5
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.3.5.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.3.5.1.1
Eleva alla potenza di .
Passaggio 2.3.5.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.3.5.1.2.1
Moltiplica per .
Passaggio 2.3.5.1.2.2
Moltiplica per .
Passaggio 2.3.5.1.3
Sottrai da .
Passaggio 2.3.5.1.4
Riscrivi come .
Passaggio 2.3.5.1.5
Riscrivi come .
Passaggio 2.3.5.1.6
Riscrivi come .
Passaggio 2.3.5.1.7
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.3.5.1.7.1
Scomponi da .
Passaggio 2.3.5.1.7.2
Riscrivi come .
Passaggio 2.3.5.1.8
Estrai i termini dal radicale.
Passaggio 2.3.5.1.9
Sposta alla sinistra di .
Passaggio 2.3.5.2
Moltiplica per .
Passaggio 2.3.5.3
Semplifica .
Passaggio 2.3.5.4
Cambia da a .
Passaggio 2.3.6
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 3.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.2.1
Poni uguale a .
Passaggio 3.2.2
Somma a entrambi i lati dell'equazione.
Passaggio 4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Tocca per altri passaggi...
Passaggio 4.1
Calcola per .
Tocca per altri passaggi...
Passaggio 4.1.1
Sostituisci per .
Passaggio 4.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Sottrai da .
Passaggio 4.1.2.2
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Indefinito
Indefinito
Passaggio 5
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato