Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 1.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.3
e .
Passaggio 1.4
Riduci i numeratori su un comune denominatore.
Passaggio 1.5
Semplifica il numeratore.
Passaggio 1.5.1
Moltiplica per .
Passaggio 1.5.2
Sottrai da .
Passaggio 2
Passaggio 2.1
Dividi per ciascun termine in .
Passaggio 2.2
Semplifica il lato sinistro.
Passaggio 2.2.1
Elimina il fattore comune di .
Passaggio 2.2.1.1
Elimina il fattore comune.
Passaggio 2.2.1.2
Dividi per .
Passaggio 2.3
Semplifica il lato destro.
Passaggio 2.3.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 2.3.2
Elimina il fattore comune di .
Passaggio 2.3.2.1
Elimina il fattore comune.
Passaggio 2.3.2.2
Riscrivi l'espressione.
Passaggio 3
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 4
Passaggio 4.1
Il valore esatto di è .
Passaggio 5
Passaggio 5.1
Dividi per ciascun termine in .
Passaggio 5.2
Semplifica il lato sinistro.
Passaggio 5.2.1
Elimina il fattore comune di .
Passaggio 5.2.1.1
Elimina il fattore comune.
Passaggio 5.2.1.2
Dividi per .
Passaggio 5.3
Semplifica il lato destro.
Passaggio 5.3.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 5.3.2
Moltiplica .
Passaggio 5.3.2.1
Moltiplica per .
Passaggio 5.3.2.2
Moltiplica per .
Passaggio 6
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 7
Passaggio 7.1
Semplifica.
Passaggio 7.1.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 7.1.2
e .
Passaggio 7.1.3
Riduci i numeratori su un comune denominatore.
Passaggio 7.1.4
Sottrai da .
Passaggio 7.1.4.1
Riordina e .
Passaggio 7.1.4.2
Sottrai da .
Passaggio 7.2
Dividi per ciascun termine in e semplifica.
Passaggio 7.2.1
Dividi per ciascun termine in .
Passaggio 7.2.2
Semplifica il lato sinistro.
Passaggio 7.2.2.1
Elimina il fattore comune di .
Passaggio 7.2.2.1.1
Elimina il fattore comune.
Passaggio 7.2.2.1.2
Dividi per .
Passaggio 7.2.3
Semplifica il lato destro.
Passaggio 7.2.3.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 7.2.3.2
Moltiplica .
Passaggio 7.2.3.2.1
Moltiplica per .
Passaggio 7.2.3.2.2
Moltiplica per .
Passaggio 8
Passaggio 8.1
Si può calcolare il periodo della funzione usando .
Passaggio 8.2
Sostituisci con nella formula per il periodo.
Passaggio 8.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 8.4
Elimina il fattore comune di .
Passaggio 8.4.1
Elimina il fattore comune.
Passaggio 8.4.2
Dividi per .
Passaggio 9
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 10
Usa ogni radice per creare gli intervalli di prova.
Passaggio 11
Passaggio 11.1
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 11.1.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 11.1.2
Sostituisci con nella diseguaglianza originale.
Passaggio 11.1.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 11.2
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 11.2.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 11.2.2
Sostituisci con nella diseguaglianza originale.
Passaggio 11.2.3
Il lato sinistro di non è maggiore del lato destro di ; ciò significa che l'affermazione data è falsa.
Falso
Falso
Passaggio 11.3
Testa un valore sull'intervallo per verificare se rende vera la diseguaglianza.
Passaggio 11.3.1
Scegli un valore sull'intervallo e verifica se soddisfa la diseguaglianza originale.
Passaggio 11.3.2
Sostituisci con nella diseguaglianza originale.
Passaggio 11.3.3
Il lato sinistro di è maggiore del lato destro di ; ciò significa che l'affermazione data è sempre vera.
Vero
Vero
Passaggio 11.4
Confronta gli intervalli per determinare quali soddisfano la diseguaglianza originale.
Vero
Falso
Vero
Vero
Falso
Vero
Passaggio 12
La soluzione è costituita da tutti gli intervalli veri.
o , per qualsiasi intero
Passaggio 13
Converti la diseguaglianza in notazione a intervalli.
Passaggio 14