Calcolo Esempi

Trovare i Punti Critici f(x)=1/3x^3+3/2x^2+8x-4
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3
e .
Passaggio 1.1.2.4
e .
Passaggio 1.1.2.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.2.5.1
Elimina il fattore comune.
Passaggio 1.1.2.5.2
Dividi per .
Passaggio 1.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.3.3
e .
Passaggio 1.1.3.4
Moltiplica per .
Passaggio 1.1.3.5
e .
Passaggio 1.1.3.6
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 1.1.3.6.1
Scomponi da .
Passaggio 1.1.3.6.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 1.1.3.6.2.1
Scomponi da .
Passaggio 1.1.3.6.2.2
Elimina il fattore comune.
Passaggio 1.1.3.6.2.3
Riscrivi l'espressione.
Passaggio 1.1.3.6.2.4
Dividi per .
Passaggio 1.1.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.4.3
Moltiplica per .
Passaggio 1.1.5
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 1.1.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.5.2
Somma e .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Utilizza la formula quadratica per trovare le soluzioni.
Passaggio 2.3
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.4
Semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.4.1.1
Eleva alla potenza di .
Passaggio 2.4.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.4.1.2.1
Moltiplica per .
Passaggio 2.4.1.2.2
Moltiplica per .
Passaggio 2.4.1.3
Sottrai da .
Passaggio 2.4.1.4
Riscrivi come .
Passaggio 2.4.1.5
Riscrivi come .
Passaggio 2.4.1.6
Riscrivi come .
Passaggio 2.4.2
Moltiplica per .
Passaggio 2.5
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.5.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.5.1.1
Eleva alla potenza di .
Passaggio 2.5.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.5.1.2.1
Moltiplica per .
Passaggio 2.5.1.2.2
Moltiplica per .
Passaggio 2.5.1.3
Sottrai da .
Passaggio 2.5.1.4
Riscrivi come .
Passaggio 2.5.1.5
Riscrivi come .
Passaggio 2.5.1.6
Riscrivi come .
Passaggio 2.5.2
Moltiplica per .
Passaggio 2.5.3
Cambia da a .
Passaggio 2.5.4
Riscrivi come .
Passaggio 2.5.5
Scomponi da .
Passaggio 2.5.6
Scomponi da .
Passaggio 2.5.7
Sposta il negativo davanti alla frazione.
Passaggio 2.6
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.6.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.6.1.1
Eleva alla potenza di .
Passaggio 2.6.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.6.1.2.1
Moltiplica per .
Passaggio 2.6.1.2.2
Moltiplica per .
Passaggio 2.6.1.3
Sottrai da .
Passaggio 2.6.1.4
Riscrivi come .
Passaggio 2.6.1.5
Riscrivi come .
Passaggio 2.6.1.6
Riscrivi come .
Passaggio 2.6.2
Moltiplica per .
Passaggio 2.6.3
Cambia da a .
Passaggio 2.6.4
Riscrivi come .
Passaggio 2.6.5
Scomponi da .
Passaggio 2.6.6
Scomponi da .
Passaggio 2.6.7
Sposta il negativo davanti alla frazione.
Passaggio 2.7
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato