Calcolo Esempi

Valutare Utilizzando la Regola di L'Hospital limite per x tendente a infinity di (1+2x)^(7/(2 logaritmo naturale di x))
Passaggio 1
Usa la proprietà dei logaritmi per semplificare il limite.
Tocca per altri passaggi...
Passaggio 1.1
Riscrivi come .
Passaggio 1.2
Espandi spostando fuori dal logaritmo.
Passaggio 2
Calcola il limite.
Tocca per altri passaggi...
Passaggio 2.1
Sposta il limite nell'esponente.
Passaggio 2.2
e .
Passaggio 2.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 3
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 3.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 3.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 3.1.2
Con un logaritmo che tende a infinito, il valore diventa .
Passaggio 3.1.3
Con un logaritmo che tende a infinito, il valore diventa .
Passaggio 3.1.4
Infinito diviso per infinito è indefinito.
Indefinito
Passaggio 3.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.3.1
Differenzia numeratore e denominatore.
Passaggio 3.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 3.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 3.3.2.2
La derivata di rispetto a è .
Passaggio 3.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.5
Somma e .
Passaggio 3.3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.7
e .
Passaggio 3.3.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.3.9
Moltiplica per .
Passaggio 3.3.10
Riordina i termini.
Passaggio 3.3.11
La derivata di rispetto a è .
Passaggio 3.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 3.5
e .
Passaggio 4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 5
Dividi il numeratore e il denominatore per la massima potenza di nel denominatore, che è .
Passaggio 6
Calcola il limite.
Tocca per altri passaggi...
Passaggio 6.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.1.1
Elimina il fattore comune.
Passaggio 6.1.2
Riscrivi l'espressione.
Passaggio 6.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.2.1
Elimina il fattore comune.
Passaggio 6.2.2
Dividi per .
Passaggio 6.3
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 6.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 6.5
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 6.6
Calcola il limite di che è costante, mentre tende a .
Passaggio 7
Poiché il suo numeratore tende a un numero reale, mentre il denominatore è illimitato, la frazione tende a .
Passaggio 8
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 8.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 8.1.1
Elimina il fattore comune.
Passaggio 8.1.2
Riscrivi l'espressione.
Passaggio 8.2
Somma e .
Passaggio 8.3
e .