Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia.
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.2.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.2.4
e .
Passaggio 1.1.2.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.2.6
Semplifica il numeratore.
Passaggio 1.1.2.6.1
Moltiplica per .
Passaggio 1.1.2.6.2
Sottrai da .
Passaggio 1.1.2.7
Sposta il negativo davanti alla frazione.
Passaggio 1.1.2.8
e .
Passaggio 1.1.2.9
e .
Passaggio 1.1.2.10
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.1.2.11
Scomponi da .
Passaggio 1.1.2.12
Elimina i fattori comuni.
Passaggio 1.1.2.12.1
Scomponi da .
Passaggio 1.1.2.12.2
Elimina il fattore comune.
Passaggio 1.1.2.12.3
Riscrivi l'espressione.
Passaggio 1.1.2.13
Sposta il negativo davanti alla frazione.
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3
Trova il minimo comune denominatore dei termini nell'equazione.
Passaggio 2.3.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 2.3.2
Il minimo comune multiplo di uno e qualsiasi espressione è l'espressione.
Passaggio 2.4
Moltiplica per ciascun termine in per eliminare le frazioni.
Passaggio 2.4.1
Moltiplica ogni termine in per .
Passaggio 2.4.2
Semplifica il lato sinistro.
Passaggio 2.4.2.1
Elimina il fattore comune di .
Passaggio 2.4.2.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 2.4.2.1.2
Elimina il fattore comune.
Passaggio 2.4.2.1.3
Riscrivi l'espressione.
Passaggio 2.5
Risolvi l'equazione.
Passaggio 2.5.1
Riscrivi l'equazione come .
Passaggio 2.5.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.5.2.1
Dividi per ciascun termine in .
Passaggio 2.5.2.2
Semplifica il lato sinistro.
Passaggio 2.5.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 2.5.2.2.2
Dividi per .
Passaggio 2.5.2.3
Semplifica il lato destro.
Passaggio 2.5.2.3.1
Dividi per .
Passaggio 2.5.3
Eleva ogni lato dell'equazione alla potenza di per eliminare l'esponente frazionario sul lato sinistro.
Passaggio 2.5.4
Semplifica il lato sinistro.
Passaggio 2.5.4.1
Semplifica .
Passaggio 2.5.4.1.1
Moltiplica gli esponenti in .
Passaggio 2.5.4.1.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.5.4.1.1.2
Elimina il fattore comune di .
Passaggio 2.5.4.1.1.2.1
Elimina il fattore comune.
Passaggio 2.5.4.1.1.2.2
Riscrivi l'espressione.
Passaggio 2.5.4.1.1.3
Elimina il fattore comune di .
Passaggio 2.5.4.1.1.3.1
Elimina il fattore comune.
Passaggio 2.5.4.1.1.3.2
Riscrivi l'espressione.
Passaggio 2.5.4.1.2
Semplifica.
Passaggio 2.5.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.5.5.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 2.5.5.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 2.5.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3
I valori che rendono la derivata uguale a sono .
Passaggio 4
Passaggio 4.1
Applica la regola per riscrivere l'elevazione a potenza come un radicale.
Passaggio 4.2
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4.3
Risolvi per .
Passaggio 4.3.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al cubo entrambi i lati dell'equazione.
Passaggio 4.3.2
Semplifica ogni lato dell'equazione.
Passaggio 4.3.2.1
Usa per riscrivere come .
Passaggio 4.3.2.2
Semplifica il lato sinistro.
Passaggio 4.3.2.2.1
Moltiplica gli esponenti in .
Passaggio 4.3.2.2.1.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 4.3.2.2.1.2
Elimina il fattore comune di .
Passaggio 4.3.2.2.1.2.1
Elimina il fattore comune.
Passaggio 4.3.2.2.1.2.2
Riscrivi l'espressione.
Passaggio 4.3.2.3
Semplifica il lato destro.
Passaggio 4.3.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.3.3
Risolvi per .
Passaggio 4.3.3.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 4.3.3.2
Semplifica .
Passaggio 4.3.3.2.1
Riscrivi come .
Passaggio 4.3.3.2.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 4.3.3.2.3
Più o meno è .
Passaggio 5
Dividi in intervalli separati intorno ai valori che rendono la derivata o indefinita.
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
La risposta finale è .
Passaggio 6.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
La risposta finale è .
Passaggio 7.3
Semplifica.
Passaggio 7.4
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 8
Passaggio 8.1
Sostituisci la variabile con nell'espressione.
Passaggio 8.2
Semplifica il risultato.
Passaggio 8.2.1
Semplifica ciascun termine.
Passaggio 8.2.1.1
Eleva alla potenza di .
Passaggio 8.2.1.2
Dividi per .
Passaggio 8.2.1.3
Moltiplica per .
Passaggio 8.2.2
Sottrai da .
Passaggio 8.2.3
La risposta finale è .
Passaggio 8.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 9
Passaggio 9.1
Sostituisci la variabile con nell'espressione.
Passaggio 9.2
Semplifica il risultato.
Passaggio 9.2.1
Semplifica ciascun termine.
Passaggio 9.2.1.1
Eleva alla potenza di .
Passaggio 9.2.1.2
Dividi per .
Passaggio 9.2.1.3
Moltiplica per .
Passaggio 9.2.2
Sottrai da .
Passaggio 9.2.3
La risposta finale è .
Passaggio 9.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 10
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Crescente su:
Decrescente su:
Passaggio 11