Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.2
Differenzia.
Passaggio 1.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.5
Moltiplica per .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.3
Imposta uguale a e risolvi per .
Passaggio 2.3.1
Imposta uguale a .
Passaggio 2.3.2
Risolvi per .
Passaggio 2.3.2.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 2.3.2.2
Non è possibile risolvere l'equazione perché è indefinita.
Indefinito
Passaggio 2.3.2.3
Non c'è soluzione per
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 2.4
Imposta uguale a e risolvi per .
Passaggio 2.4.1
Imposta uguale a .
Passaggio 2.4.2
Risolvi per .
Passaggio 2.4.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 2.4.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.4.2.2.1
Dividi per ciascun termine in .
Passaggio 2.4.2.2.2
Semplifica il lato sinistro.
Passaggio 2.4.2.2.2.1
Elimina il fattore comune di .
Passaggio 2.4.2.2.2.1.1
Elimina il fattore comune.
Passaggio 2.4.2.2.2.1.2
Dividi per .
Passaggio 2.4.2.2.3
Semplifica il lato destro.
Passaggio 2.4.2.2.3.1
Dividi per .
Passaggio 2.4.2.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 2.4.2.4
Qualsiasi radice di è .
Passaggio 2.4.2.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.4.2.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 2.4.2.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 2.4.2.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.5
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
Passaggio 3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4
Passaggio 4.1
Calcola per .
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica.
Passaggio 4.1.2.1
Semplifica ciascun termine.
Passaggio 4.1.2.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.1.2.1.2
Moltiplica per .
Passaggio 4.1.2.2
Sottrai da .
Passaggio 4.1.2.3
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 4.2
Calcola per .
Passaggio 4.2.1
Sostituisci a .
Passaggio 4.2.2
Semplifica.
Passaggio 4.2.2.1
Semplifica ciascun termine.
Passaggio 4.2.2.1.1
Eleva alla potenza di .
Passaggio 4.2.2.1.2
Moltiplica per .
Passaggio 4.2.2.2
Somma e .
Passaggio 4.3
Elenca tutti i punti.
Passaggio 5