Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 1.1.2
Differenzia.
Passaggio 1.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.4
Moltiplica per .
Passaggio 1.1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.6
Somma e .
Passaggio 1.1.3
Eleva alla potenza di .
Passaggio 1.1.4
Eleva alla potenza di .
Passaggio 1.1.5
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.1.6
Somma e .
Passaggio 1.1.7
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.8
Moltiplica per .
Passaggio 1.1.9
Semplifica.
Passaggio 1.1.9.1
Applica la proprietà distributiva.
Passaggio 1.1.9.2
Semplifica il numeratore.
Passaggio 1.1.9.2.1
Semplifica ciascun termine.
Passaggio 1.1.9.2.1.1
Moltiplica per .
Passaggio 1.1.9.2.1.2
Moltiplica per .
Passaggio 1.1.9.2.2
Sottrai da .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Risolvi l'equazione per .
Passaggio 2.3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.3.2.1
Dividi per ciascun termine in .
Passaggio 2.3.2.2
Semplifica il lato sinistro.
Passaggio 2.3.2.2.1
Elimina il fattore comune di .
Passaggio 2.3.2.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.2.1.2
Dividi per .
Passaggio 2.3.2.3
Semplifica il lato destro.
Passaggio 2.3.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 2.3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 2.3.4
Semplifica .
Passaggio 2.3.4.1
Riscrivi come .
Passaggio 2.3.4.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2.3.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 2.3.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 2.3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3
Passaggio 3.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.2
Risolvi per .
Passaggio 3.2.1
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 3.2.2
Semplifica .
Passaggio 3.2.2.1
Riscrivi come .
Passaggio 3.2.2.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 3.2.2.3
Più o meno è .
Passaggio 4
Passaggio 4.1
Calcola per .
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Indefinito
Passaggio 5
Non ci sono valori di nel dominio del problema originale per cui la derivata sia o indefinita.
Nessun punto critico trovato