Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=(x+1)^5-5x-2
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.1
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.2.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.5
Somma e .
Passaggio 1.2.6
Moltiplica per .
Passaggio 1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 1.4
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.4.2
Somma e .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 2.2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.6
Somma e .
Passaggio 2.2.7
Moltiplica per .
Passaggio 2.2.8
Moltiplica per .
Passaggio 2.3
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Somma e .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.2.1
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 4.1.2.1.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.2.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.2.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.5
Somma e .
Passaggio 4.1.2.6
Moltiplica per .
Passaggio 4.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.3
Moltiplica per .
Passaggio 4.1.4
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 4.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.4.2
Somma e .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Semplifica .
Tocca per altri passaggi...
Passaggio 5.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.1.1
Usa il teorema binomiale.
Passaggio 5.2.1.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.1.2.1
Moltiplica per .
Passaggio 5.2.1.2.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 5.2.1.2.3
Moltiplica per .
Passaggio 5.2.1.2.4
Uno elevato a qualsiasi potenza è uno.
Passaggio 5.2.1.2.5
Moltiplica per .
Passaggio 5.2.1.2.6
Uno elevato a qualsiasi potenza è uno.
Passaggio 5.2.1.3
Applica la proprietà distributiva.
Passaggio 5.2.1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 5.2.1.4.1
Moltiplica per .
Passaggio 5.2.1.4.2
Moltiplica per .
Passaggio 5.2.1.4.3
Moltiplica per .
Passaggio 5.2.1.4.4
Moltiplica per .
Passaggio 5.2.2
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 5.2.2.1
Sottrai da .
Passaggio 5.2.2.2
Somma e .
Passaggio 5.3
Rappresenta graficamente ogni lato dell'equazione. La soluzione è il valore x del punto di intersezione.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Somma e .
Passaggio 9.2
Eleva alla potenza di .
Passaggio 9.3
Moltiplica per .
Passaggio 10
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 11
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 11.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 11.2.1.1
Somma e .
Passaggio 11.2.1.2
Eleva alla potenza di .
Passaggio 11.2.1.3
Moltiplica per .
Passaggio 11.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 11.2.2.1
Somma e .
Passaggio 11.2.2.2
Sottrai da .
Passaggio 11.2.3
La risposta finale è .
Passaggio 12
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 13
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 13.1
Somma e .
Passaggio 13.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 13.3
Moltiplica per .
Passaggio 14
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 15
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 15.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 15.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 15.2.1.1
Somma e .
Passaggio 15.2.1.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 15.2.1.3
Moltiplica per .
Passaggio 15.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 15.2.2.1
Somma e .
Passaggio 15.2.2.2
Sottrai da .
Passaggio 15.2.3
La risposta finale è .
Passaggio 16
Questi sono gli estremi locali per .
è un massimo locale
è un minimo locale
Passaggio 17