Inserisci un problema...
Calcolo Esempi
Passaggio 1
Scrivi come funzione.
Passaggio 2
Passaggio 2.1
Trova la derivata prima.
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Calcola .
Passaggio 2.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.2.3
Moltiplica per .
Passaggio 2.1.3
Calcola .
Passaggio 2.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.3.3
Moltiplica per .
Passaggio 2.1.4
Calcola .
Passaggio 2.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.4.3
Moltiplica per .
Passaggio 2.2
Trova la derivata seconda.
Passaggio 2.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.2
Calcola .
Passaggio 2.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.2.3
Moltiplica per .
Passaggio 2.2.3
Calcola .
Passaggio 2.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3.3
Moltiplica per .
Passaggio 2.2.4
Calcola .
Passaggio 2.2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.4.3
Moltiplica per .
Passaggio 2.3
La derivata seconda di rispetto a è .
Passaggio 3
Passaggio 3.1
Imposta la derivata seconda uguale a .
Passaggio 3.2
Scomponi il primo membro dell'equazione.
Passaggio 3.2.1
Scomponi da .
Passaggio 3.2.1.1
Scomponi da .
Passaggio 3.2.1.2
Scomponi da .
Passaggio 3.2.1.3
Scomponi da .
Passaggio 3.2.1.4
Scomponi da .
Passaggio 3.2.1.5
Scomponi da .
Passaggio 3.2.2
Scomponi.
Passaggio 3.2.2.1
Scomponi usando il metodo AC.
Passaggio 3.2.2.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 3.2.2.1.2
Scrivi la forma fattorizzata usando questi interi.
Passaggio 3.2.2.2
Rimuovi le parentesi non necessarie.
Passaggio 3.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.4
Imposta uguale a e risolvi per .
Passaggio 3.4.1
Imposta uguale a .
Passaggio 3.4.2
Somma a entrambi i lati dell'equazione.
Passaggio 3.5
Imposta uguale a e risolvi per .
Passaggio 3.5.1
Imposta uguale a .
Passaggio 3.5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 4
Passaggio 4.1
Sostituisci in per trovare il valore di .
Passaggio 4.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.1.2
Semplifica il risultato.
Passaggio 4.1.2.1
Semplifica ciascun termine.
Passaggio 4.1.2.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.1.2.1.2
Moltiplica per .
Passaggio 4.1.2.1.3
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.1.2.1.4
Moltiplica per .
Passaggio 4.1.2.1.5
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.1.2.1.6
Moltiplica per .
Passaggio 4.1.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 4.1.2.2.1
Sottrai da .
Passaggio 4.1.2.2.2
Somma e .
Passaggio 4.1.2.3
La risposta finale è .
Passaggio 4.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4.3
Sostituisci in per trovare il valore di .
Passaggio 4.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.3.2
Semplifica il risultato.
Passaggio 4.3.2.1
Semplifica ciascun termine.
Passaggio 4.3.2.1.1
Eleva alla potenza di .
Passaggio 4.3.2.1.2
Moltiplica per .
Passaggio 4.3.2.1.3
Moltiplica per sommando gli esponenti.
Passaggio 4.3.2.1.3.1
Moltiplica per .
Passaggio 4.3.2.1.3.1.1
Eleva alla potenza di .
Passaggio 4.3.2.1.3.1.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.3.2.1.3.2
Somma e .
Passaggio 4.3.2.1.4
Eleva alla potenza di .
Passaggio 4.3.2.1.5
Eleva alla potenza di .
Passaggio 4.3.2.1.6
Moltiplica per .
Passaggio 4.3.2.2
Semplifica aggiungendo i numeri.
Passaggio 4.3.2.2.1
Somma e .
Passaggio 4.3.2.2.2
Somma e .
Passaggio 4.3.2.3
La risposta finale è .
Passaggio 4.4
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4.5
Determina i punti che potrebbero essere punti di flesso.
Passaggio 5
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica ciascun termine.
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Moltiplica per .
Passaggio 6.2.2
Semplifica aggiungendo i numeri.
Passaggio 6.2.2.1
Somma e .
Passaggio 6.2.2.2
Somma e .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 7
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Passaggio 7.2.1
Semplifica ciascun termine.
Passaggio 7.2.1.1
Usa la regola della potenza per distribuire l'esponente.
Passaggio 7.2.1.1.1
Applica la regola del prodotto a .
Passaggio 7.2.1.1.2
Applica la regola del prodotto a .
Passaggio 7.2.1.2
Eleva alla potenza di .
Passaggio 7.2.1.3
Moltiplica per .
Passaggio 7.2.1.4
Uno elevato a qualsiasi potenza è uno.
Passaggio 7.2.1.5
Eleva alla potenza di .
Passaggio 7.2.1.6
Elimina il fattore comune di .
Passaggio 7.2.1.6.1
Scomponi da .
Passaggio 7.2.1.6.2
Elimina il fattore comune.
Passaggio 7.2.1.6.3
Riscrivi l'espressione.
Passaggio 7.2.1.7
Elimina il fattore comune di .
Passaggio 7.2.1.7.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 7.2.1.7.2
Scomponi da .
Passaggio 7.2.1.7.3
Elimina il fattore comune.
Passaggio 7.2.1.7.4
Riscrivi l'espressione.
Passaggio 7.2.1.8
Moltiplica per .
Passaggio 7.2.2
Semplifica aggiungendo i numeri.
Passaggio 7.2.2.1
Somma e .
Passaggio 7.2.2.2
Somma e .
Passaggio 7.2.3
La risposta finale è .
Passaggio 7.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 8
Passaggio 8.1
Sostituisci la variabile con nell'espressione.
Passaggio 8.2
Semplifica il risultato.
Passaggio 8.2.1
Semplifica ciascun termine.
Passaggio 8.2.1.1
Eleva alla potenza di .
Passaggio 8.2.1.2
Moltiplica per .
Passaggio 8.2.1.3
Moltiplica per .
Passaggio 8.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 8.2.2.1
Sottrai da .
Passaggio 8.2.2.2
Somma e .
Passaggio 8.2.3
La risposta finale è .
Passaggio 8.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 9
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso i punti di flesso sono .
Passaggio 10