Calcolo Esempi

Valutare Utilizzando la Regola di L'Hospital limite per x tendente a 0 di ( logaritmo naturale di 4+x- logaritmo naturale di 4)/x
Passaggio 1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 1.2.1
Calcola il limite.
Tocca per altri passaggi...
Passaggio 1.2.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.2.1.2
Sposta il limite all'interno del logaritmo.
Passaggio 1.2.1.3
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.2.1.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.2.1.5
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.2.2
Calcola il limite di inserendo per .
Passaggio 1.2.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.2.3.1
Utilizza la proprietà del quoziente dei logaritmi, .
Passaggio 1.2.3.2
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 1.2.3.2.1
Scomponi da .
Passaggio 1.2.3.2.2
Scomponi da .
Passaggio 1.2.3.2.3
Scomponi da .
Passaggio 1.2.3.2.4
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 1.2.3.2.4.1
Scomponi da .
Passaggio 1.2.3.2.4.2
Elimina il fattore comune.
Passaggio 1.2.3.2.4.3
Riscrivi l'espressione.
Passaggio 1.2.3.2.4.4
Dividi per .
Passaggio 1.2.3.3
Somma e .
Passaggio 1.2.3.4
Il logaritmo naturale di è .
Passaggio 1.3
Calcola il limite di inserendo per .
Passaggio 1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3
Calcola .
Tocca per altri passaggi...
Passaggio 3.3.1
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 3.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 3.3.1.2
La derivata di rispetto a è .
Passaggio 3.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.3.5
Somma e .
Passaggio 3.3.6
Moltiplica per .
Passaggio 3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.5
Semplifica.
Tocca per altri passaggi...
Passaggio 3.5.1
Somma e .
Passaggio 3.5.2
Riordina i termini.
Passaggio 3.6
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 5
Calcola il limite.
Tocca per altri passaggi...
Passaggio 5.1
Moltiplica per .
Passaggio 5.2
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 5.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 5.4
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 5.5
Calcola il limite di che è costante, mentre tende a .
Passaggio 6
Calcola il limite di inserendo per .
Passaggio 7
Somma e .