Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
La derivata di rispetto a è .
Passaggio 1.1.3.3
e .
Passaggio 1.1.3.4
Sposta il negativo davanti alla frazione.
Passaggio 1.1.4
Riordina i termini.
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3
Trova il minimo comune denominatore dei termini nell'equazione.
Passaggio 2.3.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 2.3.2
Il minimo comune multiplo di uno e qualsiasi espressione è l'espressione.
Passaggio 2.4
Moltiplica per ciascun termine in per eliminare le frazioni.
Passaggio 2.4.1
Moltiplica ogni termine in per .
Passaggio 2.4.2
Semplifica il lato sinistro.
Passaggio 2.4.2.1
Elimina il fattore comune di .
Passaggio 2.4.2.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 2.4.2.1.2
Elimina il fattore comune.
Passaggio 2.4.2.1.3
Riscrivi l'espressione.
Passaggio 2.5
Risolvi l'equazione.
Passaggio 2.5.1
Riscrivi l'equazione come .
Passaggio 2.5.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.5.2.1
Dividi per ciascun termine in .
Passaggio 2.5.2.2
Semplifica il lato sinistro.
Passaggio 2.5.2.2.1
Elimina il fattore comune di .
Passaggio 2.5.2.2.1.1
Elimina il fattore comune.
Passaggio 2.5.2.2.1.2
Dividi per .
Passaggio 2.5.2.3
Semplifica il lato destro.
Passaggio 2.5.2.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 3
Passaggio 3.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 4
Passaggio 4.1
Calcola per .
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica ciascun termine.
Passaggio 4.1.2.1
Elimina il fattore comune di .
Passaggio 4.1.2.1.1
Elimina il fattore comune.
Passaggio 4.1.2.1.2
Riscrivi l'espressione.
Passaggio 4.1.2.2
Semplifica spostando all'interno del logaritmo.
Passaggio 4.1.2.3
Applica la regola del prodotto a .
Passaggio 4.1.2.4
Eleva alla potenza di .
Passaggio 4.1.2.5
Eleva alla potenza di .
Passaggio 4.2
Calcola per .
Passaggio 4.2.1
Sostituisci a .
Passaggio 4.2.2
Il logaritmo naturale di zero è indefinito.
Indefinito
Indefinito
Passaggio 4.3
Elenca tutti i punti.
Passaggio 5