Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=x radice quadrata di x^2+4
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Usa per riscrivere come .
Passaggio 1.2
Differenzia usando la regola del prodotto, che indica che è dove e .
Passaggio 1.3
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 1.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.4
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.5
e .
Passaggio 1.6
Riduci i numeratori su un comune denominatore.
Passaggio 1.7
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.7.1
Moltiplica per .
Passaggio 1.7.2
Sottrai da .
Passaggio 1.8
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 1.8.1
Sposta il negativo davanti alla frazione.
Passaggio 1.8.2
e .
Passaggio 1.8.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.8.4
e .
Passaggio 1.9
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.10
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.11
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.12
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 1.12.1
Somma e .
Passaggio 1.12.2
e .
Passaggio 1.12.3
e .
Passaggio 1.13
Eleva alla potenza di .
Passaggio 1.14
Eleva alla potenza di .
Passaggio 1.15
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.16
Riduci l'espressione eliminando i fattori comuni.
Tocca per altri passaggi...
Passaggio 1.16.1
Somma e .
Passaggio 1.16.2
Elimina il fattore comune.
Passaggio 1.16.3
Riscrivi l'espressione.
Passaggio 1.17
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.18
Moltiplica per .
Passaggio 1.19
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.20
Riduci i numeratori su un comune denominatore.
Passaggio 1.21
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.21.1
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.21.2
Riduci i numeratori su un comune denominatore.
Passaggio 1.21.3
Somma e .
Passaggio 1.21.4
Dividi per .
Passaggio 1.22
Semplifica .
Passaggio 1.23
Somma e .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 2.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.2.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.2.2.1
Elimina il fattore comune.
Passaggio 2.2.2.2
Riscrivi l'espressione.
Passaggio 2.3
Semplifica.
Passaggio 2.4
Differenzia.
Tocca per altri passaggi...
Passaggio 2.4.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.4.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.4.4
Moltiplica per .
Passaggio 2.4.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.6
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.4.6.1
Somma e .
Passaggio 2.4.6.2
Sposta alla sinistra di .
Passaggio 2.5
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 2.5.1
Per applicare la regola della catena, imposta come .
Passaggio 2.5.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.5.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.6
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.7
e .
Passaggio 2.8
Riduci i numeratori su un comune denominatore.
Passaggio 2.9
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.9.1
Moltiplica per .
Passaggio 2.9.2
Sottrai da .
Passaggio 2.10
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 2.10.1
Sposta il negativo davanti alla frazione.
Passaggio 2.10.2
e .
Passaggio 2.10.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 2.11
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.12
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.13
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.14
Semplifica i termini.
Tocca per altri passaggi...
Passaggio 2.14.1
Somma e .
Passaggio 2.14.2
e .
Passaggio 2.14.3
e .
Passaggio 2.14.4
Elimina il fattore comune.
Passaggio 2.14.5
Riscrivi l'espressione.
Passaggio 2.15
Semplifica.
Tocca per altri passaggi...
Passaggio 2.15.1
Applica la proprietà distributiva.
Passaggio 2.15.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.15.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.15.2.1.1
Moltiplica per .
Passaggio 2.15.2.1.2
Moltiplica per .
Passaggio 2.15.2.2
Moltiplica per .
Passaggio 2.15.2.3
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.15.2.3.1
Scomponi da .
Passaggio 2.15.2.3.2
Scomponi da .
Passaggio 2.15.2.3.3
Scomponi da .
Passaggio 2.15.2.4
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.15.2.5
Riduci i numeratori su un comune denominatore.
Passaggio 2.15.2.6
Riscrivi in una forma fattorizzata.
Tocca per altri passaggi...
Passaggio 2.15.2.6.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.15.2.6.1.1
Scomponi da .
Passaggio 2.15.2.6.1.2
Scomponi da .
Passaggio 2.15.2.6.1.3
Scomponi da .
Passaggio 2.15.2.6.2
Raccogli gli esponenti.
Tocca per altri passaggi...
Passaggio 2.15.2.6.2.1
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 2.15.2.6.2.1.1
Sposta .
Passaggio 2.15.2.6.2.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.15.2.6.2.1.3
Riduci i numeratori su un comune denominatore.
Passaggio 2.15.2.6.2.1.4
Somma e .
Passaggio 2.15.2.6.2.1.5
Dividi per .
Passaggio 2.15.2.6.2.2
Semplifica .
Passaggio 2.15.2.7
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.15.2.7.1
Applica la proprietà distributiva.
Passaggio 2.15.2.7.2
Moltiplica per .
Passaggio 2.15.2.7.3
Sottrai da .
Passaggio 2.15.2.7.4
Sottrai da .
Passaggio 2.15.3
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 2.15.3.1
Riscrivi come un prodotto.
Passaggio 2.15.3.2
Moltiplica per .
Passaggio 2.15.3.3
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 2.15.3.3.1
Moltiplica per .
Tocca per altri passaggi...
Passaggio 2.15.3.3.1.1
Eleva alla potenza di .
Passaggio 2.15.3.3.1.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 2.15.3.3.2
Scrivi come una frazione con un comune denominatore.
Passaggio 2.15.3.3.3
Riduci i numeratori su un comune denominatore.
Passaggio 2.15.3.3.4
Somma e .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Poiché non c'è alcun valore di che rende la derivata prima uguale a , non ci sono estremi locali.
Nessun estremo locale
Passaggio 5
Nessun estremo locale
Passaggio 6