Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=x^2(2-5x)^3
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 1.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3
Somma e .
Passaggio 1.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.5
Moltiplica per .
Passaggio 1.3.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.7
Moltiplica per .
Passaggio 1.3.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.9
Sposta alla sinistra di .
Passaggio 1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.4.1.1
Scomponi da .
Passaggio 1.4.1.2
Scomponi da .
Passaggio 1.4.1.3
Scomponi da .
Passaggio 1.4.2
Sposta alla sinistra di .
Passaggio 1.4.3
Riscrivi come .
Passaggio 1.4.4
Espandi usando il metodo FOIL.
Tocca per altri passaggi...
Passaggio 1.4.4.1
Applica la proprietà distributiva.
Passaggio 1.4.4.2
Applica la proprietà distributiva.
Passaggio 1.4.4.3
Applica la proprietà distributiva.
Passaggio 1.4.5
Semplifica e combina i termini simili.
Tocca per altri passaggi...
Passaggio 1.4.5.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.5.1.1
Moltiplica per .
Passaggio 1.4.5.1.2
Moltiplica per .
Passaggio 1.4.5.1.3
Moltiplica per .
Passaggio 1.4.5.1.4
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.4.5.1.5
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.4.5.1.5.1
Sposta .
Passaggio 1.4.5.1.5.2
Moltiplica per .
Passaggio 1.4.5.1.6
Moltiplica per .
Passaggio 1.4.5.2
Sottrai da .
Passaggio 1.4.6
Applica la proprietà distributiva.
Passaggio 1.4.7
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.7.1
Sposta alla sinistra di .
Passaggio 1.4.7.2
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.4.7.3
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.4.8
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.8.1
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.4.8.1.1
Sposta .
Passaggio 1.4.8.1.2
Moltiplica per .
Passaggio 1.4.8.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.4.8.2.1
Sposta .
Passaggio 1.4.8.2.2
Moltiplica per .
Tocca per altri passaggi...
Passaggio 1.4.8.2.2.1
Eleva alla potenza di .
Passaggio 1.4.8.2.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.4.8.2.3
Somma e .
Passaggio 1.4.9
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.9.1
Applica la proprietà distributiva.
Passaggio 1.4.9.2
Moltiplica per .
Passaggio 1.4.9.3
Moltiplica per .
Passaggio 1.4.10
Sottrai da .
Passaggio 1.4.11
Espandi moltiplicando ciascun termine della prima espressione per ciascun termine della seconda espressione.
Passaggio 1.4.12
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.12.1
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.4.12.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.4.12.2.1
Sposta .
Passaggio 1.4.12.2.2
Moltiplica per .
Passaggio 1.4.12.3
Moltiplica per .
Passaggio 1.4.12.4
Moltiplica per .
Passaggio 1.4.12.5
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.4.12.6
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.4.12.6.1
Sposta .
Passaggio 1.4.12.6.2
Moltiplica per .
Tocca per altri passaggi...
Passaggio 1.4.12.6.2.1
Eleva alla potenza di .
Passaggio 1.4.12.6.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.4.12.6.3
Somma e .
Passaggio 1.4.12.7
Moltiplica per .
Passaggio 1.4.12.8
Moltiplica per .
Passaggio 1.4.12.9
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.4.12.10
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.4.12.10.1
Sposta .
Passaggio 1.4.12.10.2
Moltiplica per .
Tocca per altri passaggi...
Passaggio 1.4.12.10.2.1
Eleva alla potenza di .
Passaggio 1.4.12.10.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.4.12.10.3
Somma e .
Passaggio 1.4.12.11
Moltiplica per .
Passaggio 1.4.12.12
Moltiplica per .
Passaggio 1.4.13
Sottrai da .
Passaggio 1.4.14
Somma e .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Calcola .
Tocca per altri passaggi...
Passaggio 2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.4.3
Moltiplica per .
Passaggio 2.5
Calcola .
Tocca per altri passaggi...
Passaggio 2.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.5.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.5.3
Moltiplica per .
Passaggio 2.6
Riordina i termini.
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 4.1.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 4.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 4.1.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.3
Somma e .
Passaggio 4.1.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.5
Moltiplica per .
Passaggio 4.1.3.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.7
Moltiplica per .
Passaggio 4.1.3.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.9
Sposta alla sinistra di .
Passaggio 4.1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.4.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 4.1.4.1.1
Scomponi da .
Passaggio 4.1.4.1.2
Scomponi da .
Passaggio 4.1.4.1.3
Scomponi da .
Passaggio 4.1.4.2
Sposta alla sinistra di .
Passaggio 4.1.4.3
Riscrivi come .
Passaggio 4.1.4.4
Espandi usando il metodo FOIL.
Tocca per altri passaggi...
Passaggio 4.1.4.4.1
Applica la proprietà distributiva.
Passaggio 4.1.4.4.2
Applica la proprietà distributiva.
Passaggio 4.1.4.4.3
Applica la proprietà distributiva.
Passaggio 4.1.4.5
Semplifica e combina i termini simili.
Tocca per altri passaggi...
Passaggio 4.1.4.5.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.4.5.1.1
Moltiplica per .
Passaggio 4.1.4.5.1.2
Moltiplica per .
Passaggio 4.1.4.5.1.3
Moltiplica per .
Passaggio 4.1.4.5.1.4
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 4.1.4.5.1.5
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 4.1.4.5.1.5.1
Sposta .
Passaggio 4.1.4.5.1.5.2
Moltiplica per .
Passaggio 4.1.4.5.1.6
Moltiplica per .
Passaggio 4.1.4.5.2
Sottrai da .
Passaggio 4.1.4.6
Applica la proprietà distributiva.
Passaggio 4.1.4.7
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.4.7.1
Sposta alla sinistra di .
Passaggio 4.1.4.7.2
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 4.1.4.7.3
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 4.1.4.8
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.4.8.1
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 4.1.4.8.1.1
Sposta .
Passaggio 4.1.4.8.1.2
Moltiplica per .
Passaggio 4.1.4.8.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 4.1.4.8.2.1
Sposta .
Passaggio 4.1.4.8.2.2
Moltiplica per .
Tocca per altri passaggi...
Passaggio 4.1.4.8.2.2.1
Eleva alla potenza di .
Passaggio 4.1.4.8.2.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.1.4.8.2.3
Somma e .
Passaggio 4.1.4.9
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.4.9.1
Applica la proprietà distributiva.
Passaggio 4.1.4.9.2
Moltiplica per .
Passaggio 4.1.4.9.3
Moltiplica per .
Passaggio 4.1.4.10
Sottrai da .
Passaggio 4.1.4.11
Espandi moltiplicando ciascun termine della prima espressione per ciascun termine della seconda espressione.
Passaggio 4.1.4.12
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.1.4.12.1
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 4.1.4.12.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 4.1.4.12.2.1
Sposta .
Passaggio 4.1.4.12.2.2
Moltiplica per .
Passaggio 4.1.4.12.3
Moltiplica per .
Passaggio 4.1.4.12.4
Moltiplica per .
Passaggio 4.1.4.12.5
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 4.1.4.12.6
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 4.1.4.12.6.1
Sposta .
Passaggio 4.1.4.12.6.2
Moltiplica per .
Tocca per altri passaggi...
Passaggio 4.1.4.12.6.2.1
Eleva alla potenza di .
Passaggio 4.1.4.12.6.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.1.4.12.6.3
Somma e .
Passaggio 4.1.4.12.7
Moltiplica per .
Passaggio 4.1.4.12.8
Moltiplica per .
Passaggio 4.1.4.12.9
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 4.1.4.12.10
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 4.1.4.12.10.1
Sposta .
Passaggio 4.1.4.12.10.2
Moltiplica per .
Tocca per altri passaggi...
Passaggio 4.1.4.12.10.2.1
Eleva alla potenza di .
Passaggio 4.1.4.12.10.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.1.4.12.10.3
Somma e .
Passaggio 4.1.4.12.11
Moltiplica per .
Passaggio 4.1.4.12.12
Moltiplica per .
Passaggio 4.1.4.13
Sottrai da .
Passaggio 4.1.4.14
Somma e .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 5.2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 5.2.1.1
Scomponi da .
Passaggio 5.2.1.2
Scomponi da .
Passaggio 5.2.1.3
Scomponi da .
Passaggio 5.2.1.4
Scomponi da .
Passaggio 5.2.1.5
Scomponi da .
Passaggio 5.2.1.6
Scomponi da .
Passaggio 5.2.1.7
Scomponi da .
Passaggio 5.2.2
Riordina i termini.
Passaggio 5.2.3
Scomponi.
Tocca per altri passaggi...
Passaggio 5.2.3.1
Scomponi usando il teorema delle radici razionali.
Tocca per altri passaggi...
Passaggio 5.2.3.1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 5.2.3.1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 5.2.3.1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 5.2.3.1.3.1
Sostituisci nel polinomio.
Passaggio 5.2.3.1.3.2
Eleva alla potenza di .
Passaggio 5.2.3.1.3.3
Moltiplica per .
Passaggio 5.2.3.1.3.4
Eleva alla potenza di .
Passaggio 5.2.3.1.3.5
Moltiplica per .
Passaggio 5.2.3.1.3.6
Somma e .
Passaggio 5.2.3.1.3.7
Moltiplica per .
Passaggio 5.2.3.1.3.8
Sottrai da .
Passaggio 5.2.3.1.3.9
Somma e .
Passaggio 5.2.3.1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 5.2.3.1.5
Dividi per .
Tocca per altri passaggi...
Passaggio 5.2.3.1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
--+-+
Passaggio 5.2.3.1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-
--+-+
Passaggio 5.2.3.1.5.3
Moltiplica il nuovo quoziente per il divisore.
-
--+-+
-+
Passaggio 5.2.3.1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-
--+-+
+-
Passaggio 5.2.3.1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-
--+-+
+-
+
Passaggio 5.2.3.1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-
--+-+
+-
+-
Passaggio 5.2.3.1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-+
--+-+
+-
+-
Passaggio 5.2.3.1.5.8
Moltiplica il nuovo quoziente per il divisore.
-+
--+-+
+-
+-
+-
Passaggio 5.2.3.1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-+
--+-+
+-
+-
-+
Passaggio 5.2.3.1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-+
--+-+
+-
+-
-+
-
Passaggio 5.2.3.1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-+
--+-+
+-
+-
-+
-+
Passaggio 5.2.3.1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-+-
--+-+
+-
+-
-+
-+
Passaggio 5.2.3.1.5.13
Moltiplica il nuovo quoziente per il divisore.
-+-
--+-+
+-
+-
-+
-+
-+
Passaggio 5.2.3.1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-+-
--+-+
+-
+-
-+
-+
+-
Passaggio 5.2.3.1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-+-
--+-+
+-
+-
-+
-+
+-
Passaggio 5.2.3.1.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 5.2.3.1.6
Scrivi come insieme di fattori.
Passaggio 5.2.3.2
Rimuovi le parentesi non necessarie.
Passaggio 5.2.4
Scomponi.
Tocca per altri passaggi...
Passaggio 5.2.4.1
Scomponi mediante raccoglimento.
Tocca per altri passaggi...
Passaggio 5.2.4.1.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Tocca per altri passaggi...
Passaggio 5.2.4.1.1.1
Scomponi da .
Passaggio 5.2.4.1.1.2
Riscrivi come più .
Passaggio 5.2.4.1.1.3
Applica la proprietà distributiva.
Passaggio 5.2.4.1.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 5.2.4.1.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 5.2.4.1.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 5.2.4.1.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 5.2.4.2
Rimuovi le parentesi non necessarie.
Passaggio 5.2.5
Raccogli gli esponenti.
Tocca per altri passaggi...
Passaggio 5.2.5.1
Eleva alla potenza di .
Passaggio 5.2.5.2
Eleva alla potenza di .
Passaggio 5.2.5.3
Usa la regola della potenza per combinare gli esponenti.
Passaggio 5.2.5.4
Somma e .
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a .
Passaggio 5.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.5.2.1
Poni uguale a .
Passaggio 5.5.2.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.5.2.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 5.5.2.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.5.2.2.2.1
Dividi per ciascun termine in .
Passaggio 5.5.2.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.5.2.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.5.2.2.2.2.1.1
Elimina il fattore comune.
Passaggio 5.5.2.2.2.2.1.2
Dividi per .
Passaggio 5.6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.6.1
Imposta uguale a .
Passaggio 5.6.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.6.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.6.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.6.2.2.1
Dividi per ciascun termine in .
Passaggio 5.6.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.6.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.6.2.2.2.1.1
Elimina il fattore comune.
Passaggio 5.6.2.2.2.1.2
Dividi per .
Passaggio 5.6.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.6.2.2.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 5.7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 9.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.1.3
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.1.4
Moltiplica per .
Passaggio 9.1.5
Moltiplica per .
Passaggio 9.2
Semplifica aggiungendo i numeri.
Tocca per altri passaggi...
Passaggio 9.2.1
Somma e .
Passaggio 9.2.2
Somma e .
Passaggio 9.2.3
Somma e .
Passaggio 10
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 11
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 11.2.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 11.2.2
Moltiplica per .
Passaggio 11.2.3
Somma e .
Passaggio 11.2.4
Eleva alla potenza di .
Passaggio 11.2.5
Moltiplica per .
Passaggio 11.2.6
La risposta finale è .
Passaggio 12
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 13
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 13.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 13.1.1
Applica la regola del prodotto a .
Passaggio 13.1.2
Eleva alla potenza di .
Passaggio 13.1.3
Eleva alla potenza di .
Passaggio 13.1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 13.1.4.1
Scomponi da .
Passaggio 13.1.4.2
Elimina il fattore comune.
Passaggio 13.1.4.3
Riscrivi l'espressione.
Passaggio 13.1.5
Moltiplica per .
Passaggio 13.1.6
Applica la regola del prodotto a .
Passaggio 13.1.7
Eleva alla potenza di .
Passaggio 13.1.8
Eleva alla potenza di .
Passaggio 13.1.9
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 13.1.9.1
Scomponi da .
Passaggio 13.1.9.2
Elimina il fattore comune.
Passaggio 13.1.9.3
Riscrivi l'espressione.
Passaggio 13.1.10
Moltiplica per .
Passaggio 13.1.11
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 13.1.11.1
Scomponi da .
Passaggio 13.1.11.2
Elimina il fattore comune.
Passaggio 13.1.11.3
Riscrivi l'espressione.
Passaggio 13.1.12
Moltiplica per .
Passaggio 13.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 13.2.1
Somma e .
Passaggio 13.2.2
Sottrai da .
Passaggio 13.2.3
Somma e .
Passaggio 14
Poiché c'è almeno un punto con una derivata seconda o indefinita, applica il test della derivata prima.
Tocca per altri passaggi...
Passaggio 14.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 14.2
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 14.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 14.2.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 14.2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 14.2.2.1.1
Eleva alla potenza di .
Passaggio 14.2.2.1.2
Moltiplica per .
Passaggio 14.2.2.1.3
Moltiplica per .
Passaggio 14.2.2.1.4
Eleva alla potenza di .
Passaggio 14.2.2.1.5
Moltiplica per .
Passaggio 14.2.2.1.6
Eleva alla potenza di .
Passaggio 14.2.2.1.7
Moltiplica per .
Passaggio 14.2.2.2
Semplifica sottraendo i numeri.
Tocca per altri passaggi...
Passaggio 14.2.2.2.1
Sottrai da .
Passaggio 14.2.2.2.2
Sottrai da .
Passaggio 14.2.2.2.3
Sottrai da .
Passaggio 14.2.2.3
La risposta finale è .
Passaggio 14.3
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 14.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 14.3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 14.3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 14.3.2.1.1
Eleva alla potenza di .
Passaggio 14.3.2.1.2
Moltiplica per .
Passaggio 14.3.2.1.3
Moltiplica per .
Passaggio 14.3.2.1.4
Eleva alla potenza di .
Passaggio 14.3.2.1.5
Moltiplica per .
Passaggio 14.3.2.1.6
Eleva alla potenza di .
Passaggio 14.3.2.1.7
Moltiplica per .
Passaggio 14.3.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 14.3.2.2.1
Somma e .
Passaggio 14.3.2.2.2
Sottrai da .
Passaggio 14.3.2.2.3
Somma e .
Passaggio 14.3.2.3
La risposta finale è .
Passaggio 14.4
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 14.4.1
Sostituisci la variabile con nell'espressione.
Passaggio 14.4.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 14.4.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 14.4.2.1.1
Eleva alla potenza di .
Passaggio 14.4.2.1.2
Moltiplica per .
Passaggio 14.4.2.1.3
Moltiplica per .
Passaggio 14.4.2.1.4
Eleva alla potenza di .
Passaggio 14.4.2.1.5
Moltiplica per .
Passaggio 14.4.2.1.6
Eleva alla potenza di .
Passaggio 14.4.2.1.7
Moltiplica per .
Passaggio 14.4.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 14.4.2.2.1
Somma e .
Passaggio 14.4.2.2.2
Sottrai da .
Passaggio 14.4.2.2.3
Somma e .
Passaggio 14.4.2.3
La risposta finale è .
Passaggio 14.5
Sostituisci qualsiasi numero, come ad esempio , dell'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 14.5.1
Sostituisci la variabile con nell'espressione.
Passaggio 14.5.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 14.5.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 14.5.2.1.1
Eleva alla potenza di .
Passaggio 14.5.2.1.2
Moltiplica per .
Passaggio 14.5.2.1.3
Moltiplica per .
Passaggio 14.5.2.1.4
Eleva alla potenza di .
Passaggio 14.5.2.1.5
Moltiplica per .
Passaggio 14.5.2.1.6
Eleva alla potenza di .
Passaggio 14.5.2.1.7
Moltiplica per .
Passaggio 14.5.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 14.5.2.2.1
Somma e .
Passaggio 14.5.2.2.2
Sottrai da .
Passaggio 14.5.2.2.3
Somma e .
Passaggio 14.5.2.3
La risposta finale è .
Passaggio 14.6
Dato che la derivata prima ha cambiato segno da negativo a positivo intorno a , allora è un minimo locale.
è un minimo locale
Passaggio 14.7
Dato che la derivata prima ha cambiato segno da positivo a negativo intorno a , allora è un massimo locale.
è un massimo locale
Passaggio 14.8
Poiché la derivata prima non ha cambiato segno intorno a , non si tratta né di un minimo né di un massimo locale.
Non è un minimo o un massimo locale
Passaggio 14.9
Questi sono gli estremi locali per .
è un minimo locale
è un massimo locale
è un minimo locale
è un massimo locale
Passaggio 15