Calcolo Esempi

Valutare Utilizzando la Regola di L'Hospital limite per x tendente a 0 di (e^(2x)-1)/(tan(x))
Passaggio 1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 1.2.1
Calcola il limite.
Tocca per altri passaggi...
Passaggio 1.2.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.2.1.2
Sposta il limite nell'esponente.
Passaggio 1.2.1.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.2.1.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.2.2
Calcola il limite di inserendo per .
Passaggio 1.2.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.2.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.2.3.1.1
Moltiplica per .
Passaggio 1.2.3.1.2
Qualsiasi valore elevato a è .
Passaggio 1.2.3.1.3
Moltiplica per .
Passaggio 1.2.3.2
Sottrai da .
Passaggio 1.3
Calcola il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.3.1
Sposta il limite all'interno della funzione trigonometrica, poiché la tangente è continua.
Passaggio 1.3.2
Calcola il limite di inserendo per .
Passaggio 1.3.3
Il valore esatto di è .
Passaggio 1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3
Calcola .
Tocca per altri passaggi...
Passaggio 3.3.1
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 3.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 3.3.1.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 3.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.3.4
Moltiplica per .
Passaggio 3.3.5
Sposta alla sinistra di .
Passaggio 3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.5
Somma e .
Passaggio 3.6
La derivata di rispetto a è .
Passaggio 4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 5
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 6
Sposta il limite nell'esponente.
Passaggio 7
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 8
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 9
Sposta il limite all'interno della funzione trigonometrica, poiché la secante è continua.
Passaggio 10
Calcola il limite inserendo per tutte le occorrenze di .
Tocca per altri passaggi...
Passaggio 10.1
Calcola il limite di inserendo per .
Passaggio 10.2
Calcola il limite di inserendo per .
Passaggio 11
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 11.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 11.1.1
Moltiplica per .
Passaggio 11.1.2
Qualsiasi valore elevato a è .
Passaggio 11.2
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 11.2.1
Il valore esatto di è .
Passaggio 11.2.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 11.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 11.3.1
Elimina il fattore comune.
Passaggio 11.3.2
Riscrivi l'espressione.
Passaggio 11.4
Moltiplica per .