Calcolo Esempi

Trovare i Punti di Flesso f(x)=x+3cos(x)
Passaggio 1
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
La derivata di rispetto a è .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.2.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2.2
La derivata di rispetto a è .
Passaggio 1.2.3
Sottrai da .
Passaggio 1.3
La derivata seconda di rispetto a è .
Passaggio 2
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Imposta la derivata seconda uguale a .
Passaggio 2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.2.1
Dividi per ciascun termine in .
Passaggio 2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.2.2.1.1
Elimina il fattore comune.
Passaggio 2.2.2.1.2
Dividi per .
Passaggio 2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.2.3.1
Dividi per .
Passaggio 2.3
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 2.4
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.4.1
Il valore esatto di è .
Passaggio 2.5
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 2.6
Semplifica .
Tocca per altri passaggi...
Passaggio 2.6.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.6.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 2.6.2.1
e .
Passaggio 2.6.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 2.6.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.6.3.1
Moltiplica per .
Passaggio 2.6.3.2
Sottrai da .
Passaggio 2.7
Trova il periodo di .
Tocca per altri passaggi...
Passaggio 2.7.1
Si può calcolare il periodo della funzione usando .
Passaggio 2.7.2
Sostituisci con nella formula per il periodo.
Passaggio 2.7.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 2.7.4
Dividi per .
Passaggio 2.8
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 2.9
Consolida le risposte.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3
Trova i punti dove la derivata seconda è .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci in per trovare il valore di .
Tocca per altri passaggi...
Passaggio 3.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.1.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.1.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.1.2.1.1
Il valore esatto di è .
Passaggio 3.1.2.1.2
Moltiplica per .
Passaggio 3.1.2.2
Somma e .
Passaggio 3.1.2.3
La risposta finale è .
Passaggio 3.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 5
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
La risposta finale è .
Passaggio 5.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
La risposta finale è .
Passaggio 6.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 7
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso il punto di flesso è .
Passaggio 8