Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.1.2
La derivata di rispetto a è .
Passaggio 1.1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.2
Differenzia.
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Moltiplica per .
Passaggio 1.1.2.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.4
Moltiplica per .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.2.1
Dividi per ciascun termine in .
Passaggio 2.2.2
Semplifica il lato sinistro.
Passaggio 2.2.2.1
Elimina il fattore comune di .
Passaggio 2.2.2.1.1
Elimina il fattore comune.
Passaggio 2.2.2.1.2
Dividi per .
Passaggio 2.2.3
Semplifica il lato destro.
Passaggio 2.2.3.1
Dividi per .
Passaggio 2.3
Trova il valore dell'incognita corrispondente all'inverso del seno presente nell'equazione assegnata.
Passaggio 2.4
Semplifica il lato destro.
Passaggio 2.4.1
Il valore esatto di è .
Passaggio 2.5
Dividi per ciascun termine in e semplifica.
Passaggio 2.5.1
Dividi per ciascun termine in .
Passaggio 2.5.2
Semplifica il lato sinistro.
Passaggio 2.5.2.1
Elimina il fattore comune di .
Passaggio 2.5.2.1.1
Elimina il fattore comune.
Passaggio 2.5.2.1.2
Dividi per .
Passaggio 2.5.3
Semplifica il lato destro.
Passaggio 2.5.3.1
Dividi per .
Passaggio 2.6
La funzione del seno è positiva nel primo e nel secondo quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel secondo quadrante.
Passaggio 2.7
Risolvi per .
Passaggio 2.7.1
Semplifica.
Passaggio 2.7.1.1
Moltiplica per .
Passaggio 2.7.1.2
Somma e .
Passaggio 2.7.2
Dividi per ciascun termine in e semplifica.
Passaggio 2.7.2.1
Dividi per ciascun termine in .
Passaggio 2.7.2.2
Semplifica il lato sinistro.
Passaggio 2.7.2.2.1
Elimina il fattore comune di .
Passaggio 2.7.2.2.1.1
Elimina il fattore comune.
Passaggio 2.7.2.2.1.2
Dividi per .
Passaggio 2.8
Trova il periodo di .
Passaggio 2.8.1
Si può calcolare il periodo della funzione usando .
Passaggio 2.8.2
Sostituisci con nella formula per il periodo.
Passaggio 2.8.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 2.8.4
Elimina il fattore comune di e .
Passaggio 2.8.4.1
Scomponi da .
Passaggio 2.8.4.2
Elimina i fattori comuni.
Passaggio 2.8.4.2.1
Scomponi da .
Passaggio 2.8.4.2.2
Elimina il fattore comune.
Passaggio 2.8.4.2.3
Riscrivi l'espressione.
Passaggio 2.9
Il periodo della funzione è , quindi i valori si ripetono ogni radianti in entrambe le direzioni.
, per qualsiasi intero
Passaggio 2.10
Consolida le risposte.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 3
Passaggio 3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4
Passaggio 4.1
Calcola per .
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica.
Passaggio 4.1.2.1
Moltiplica per .
Passaggio 4.1.2.2
Il valore esatto di è .
Passaggio 4.2
Calcola per .
Passaggio 4.2.1
Sostituisci a .
Passaggio 4.2.2
Semplifica.
Passaggio 4.2.2.1
Elimina il fattore comune di .
Passaggio 4.2.2.1.1
Elimina il fattore comune.
Passaggio 4.2.2.1.2
Riscrivi l'espressione.
Passaggio 4.2.2.2
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il coseno è negativo nel secondo quadrante.
Passaggio 4.2.2.3
Il valore esatto di è .
Passaggio 4.2.2.4
Moltiplica per .
Passaggio 4.3
Elenca tutti i punti.
, per qualsiasi intero
, per qualsiasi intero
Passaggio 5