Calcolo Esempi

Trovare i Punti Critici f(x)=|3x-4|
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.1.2
La derivata di rispetto a è .
Passaggio 1.1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.4
Moltiplica per .
Passaggio 1.1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.6
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 1.1.2.6.1
Somma e .
Passaggio 1.1.2.6.2
e .
Passaggio 1.1.2.6.3
Sposta alla sinistra di .
Passaggio 1.1.3
Semplifica.
Tocca per altri passaggi...
Passaggio 1.1.3.1
Applica la proprietà distributiva.
Passaggio 1.1.3.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.3.2.1
Moltiplica per .
Passaggio 1.1.3.2.2
Moltiplica per .
Passaggio 1.1.3.3
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.1.3.3.1
Scomponi da .
Passaggio 1.1.3.3.2
Scomponi da .
Passaggio 1.1.3.3.3
Scomponi da .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 2.3.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.3.1.1
Dividi per ciascun termine in .
Passaggio 2.3.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.3.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.1.2.1.1
Elimina il fattore comune.
Passaggio 2.3.1.2.1.2
Dividi per .
Passaggio 2.3.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.1.3.1
Dividi per .
Passaggio 2.3.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.3.3
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.3.3.1
Dividi per ciascun termine in .
Passaggio 2.3.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.3.3.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.3.2.1.2
Dividi per .
Passaggio 3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 3.1
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.2.1
Rimuovi il valore assoluto. Ciò crea un sul lato destro dell'equazione perché .
Passaggio 3.2.2
Più o meno è .
Passaggio 3.2.3
Somma a entrambi i lati dell'equazione.
Passaggio 3.2.4
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 3.2.4.1
Dividi per ciascun termine in .
Passaggio 3.2.4.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.2.4.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 3.2.4.2.1.1
Elimina il fattore comune.
Passaggio 3.2.4.2.1.2
Dividi per .
Passaggio 4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Tocca per altri passaggi...
Passaggio 4.1
Calcola per .
Tocca per altri passaggi...
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.2.1.1
Elimina il fattore comune.
Passaggio 4.1.2.1.2
Riscrivi l'espressione.
Passaggio 4.1.2.2
Sottrai da .
Passaggio 4.1.2.3
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 4.2
Elenca tutti i punti.
Passaggio 5